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Spectral intermode coupling in a model of isotropic turbulence
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We investigate the nonlinear coupling between the so-calgdicit modes, identified with wave numbeks
such that Bsk=<k,, andimplicit modes, defined such thiagt<k=<Kk,.x. Herek; is an arbitrarily chosen cutoff
wave number anld,,,, is the ultraviolet cutoff as determined by viscous damping. The stresses arising from the
nonlinearity in the Navier-Stokes equations are categorized as “implicit-impli@t’ “Reynolds”) and
“explicit-implicit” (or “cross”). These arise from dynamic coupling between different regions of wave number
space. Their respective effects on momentum, kinetic energy, and energy flux are assessed. The analysis is
based on a model system comprising the Navier-Stokes equations and the Edwards-Fokker-Planck energy
equation[S. F. Edwards, J. Fluid MecH.8, 239 (1964] which is known to retain all the symmetries of
homogeneous, isotropic turbulence. The Reynolds stress is found to be responsible for long-range energy
transfers. It can be represented by an effective viscosity and is mainly determined by dynamical friction. The
cross term is more complicated, involving both diffusive and frictional effects. For long-range coupling it can
be expressed as a modification of the effective viscosity, while for short-range coupling it may be modeled on
the assumption that implicit scales are slaved to explicit scales. Thus, both the random and coherent aspects of
intermode coupling in turbulent flows are relevant in the cross term. The imposition of a continuity requirement
on energy transfer leads to a new parametrization that represents the effect of absent modes in a truncated
spectral simulation, and takes into account the phase-couoiterent effects, as well as the usual viscosi-
tylike (random effects.
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[. INTRODUCTION tion group(RG), a clear distinction should be drawn between
this approach and the use of RG in the study of driven hy-
There is currently a great deal of interest in the study ofdrodynamicd?2], along with later attempts by other workers
physical systems that are governed by partial differentiato apply that work to turbulence: for a discussion of this
equations driven by noise or random forces. In the case cispect see the paper by Eyiff.
fluid turbulence, the controlling symmetry is the conserva- In the present paper we approach the mode interaction
tive exchange of energy among the Fourier wave numbeand elimination problem from a different direction. We con-
modes. This is a noteworthy feature because it imposes sigider the Fourier modes of the velocity fieldk,t) on the
nificant constraints on any attempt to reduce the number ofvave number interval € k<k,.x, wherek,,4 is chosen to
degrees of freedom while retaining the primary flow featuresbe large enough to capture all the energy dissipation of the
If we eliminate certain modes from the description, thenturbulencd 1]. We divide the velocity field inta™ (k,t), for
in principle we must compensate in some way for the abser@<k=k, (referred to as the explicit scajeandu™ (k,t) for
modes. In particular, it appears essential to at least maintaik,<k<k_,,, (the implicit scales The wave number cutoff
both the kinetic energy of the system and the rate at whiclk. is normally taken to be in the inertial range but is other-
energy is transferred through its modes. This problem hawise arbitrary. In particular, we examine the coupling be-
recently been studied by employing a conditional average toween the explicit and implicit scales from the point of view
progressively eliminate modes in wave number shells, beginef momentum, energy, and energy flux. Apart from its rel-
ning with the highest wave numbeld]. Each coarse- evance from a fundamental point of view, this analysis can
graining operation was followed by a rescaling, based on abe used to formulate a parametrization of the dynamic con-
effective turbulence viscosity that arises as a result of th@equences of small-scale turbulent motions on the evolution
conditional average. This sequence of operations was carriadf large-scale flow features that are retained explicitly in a
out in the viscous range of wave numbé&rsvhere the Rey- numerical simulation.
nolds number based dais less than unity. This permits the In order to study this problem, we represent the turbu-
unambiguous use of perturbation theory. The iteration idence by a model system corresponding to the theory of Ed-
found to reach a fixed point that corresponds to the onset olards[4]. This allows us to make both analytical and nu-
scaling behavior(the so-called “inertial range” of wave merical predictions about the interscale coupling through
numbers$. Although the procedure is a form of renormaliza- integration of the energy transfer kernel over the appropriate
regions ofk space and has the advantage over, e.g., direct
numerical simulations that one can obtain results for arbi-

*Department of Physics, Chuo University, Tokyo. trarily large values of the Reynolds number. Moreover, con-
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Netherlands. However, in view of the interdisciplinary nature of turbu-
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lence research, it may be as well at this stage to clarify ouby its comparative simplicity, although its relationship to
use of the term “model system.” In physics it is usual to fundamental concepts in statistical mechanics is also of in-

distinguish betweertheoriesthat may involve approxima- terest. o _ _

tions of a general kind, such as truncation of expansions at a 1he organization of this paper is as follows. In Sec. Il we
consistent order, anthodelsthat involve more specific as- "€VieW the basic equations and formulate the problem more
sumptions and which normally involve the introduction of precisely. Section Il presents and discusses the EFP model
one or more constants that must be fixed by comparison wit sed to describe the energy dynamics. Analytical, asymptotic

. h f | | stimates for the energy transfer, obtained with this model,
experiment. In the context of turbulence, examplesned- 5. cojlected in Sec. IV while a more comprehensive numeri-

ries include the direct-interaction approximatioDIA), the g study is presented in Sec. V. The consequences of this
Edwards-Fokker-Planck theorfEFP), the self-consistent- analysis for a large-eddy simulation are described in Sec. VI
field theory(SCH and the local energy transfer thedET)  in which a subgrid model is proposed, consistent with the
whereas examples ahodelsinclude the test-field model intermode coupling in the EFP model. This is followed by
(TFM) and the eddy-damped quasinormal Markovian theoryour conclusions in Sec. VII.

(EDQNM) [5,6]. In the context of engineering fluid dynam-

ics the theoretical activity is referred to as “modeling” and in Il. THE BASIC EQUATIONS AND STATEMENT

practice the distinction between theories and models is OF THE PROBLEM

rarely, if ever, made. Nevertheless, in effect, the definition of |, the context of fluid dynamics, turbulence presents ei-

the term “model” is the same in both cultures. ther a moment closure problem, if one favors the use of
It is when we consider the use to which we put a modelstagistical theory, or a problem of many length and time
that a chasm yawns between the two cultures. In engineeringcales, if one attempts a direct numerical simulation of the
(and many other scientific disciplines, including, sometimesNavier-Stokes equationdSE9 on a computef5,6]. Over
physicg a model(or mathematical modgls intended to de-  the last few decades, there has been growing interest in a
scribe an actual practical situation and is expected to haveybrid approach, known as large-eddy simulation. As the
predictive ability. It is judged essentially by this criterion: name suggests, the largest scales of the motion are simulated
can it predict outcomes in real situations? If it cannot, then iton a grid in real X) space, with a closure model being em-
will be rejected. ployed to account for the nonlinear coupling to the “sub-
In fundamental physics the situation is completely differ-grid” scales. Statistical theory may be adopted to obtain an
ent, and models are often studied in their own right as interappropriate closure model, but similarity considerations and
esting physical systems. At the macroscopic level, we hav&igorous properties of the turbulent stresses can also be used
the recent development of interest in drivieochastig dif-  to arrive at suitable mode(s,9].
fusion equations such as the Kardar-Parisi-ZhdK§Zz) In order to elucidate some fundamental aspects of the
equation(for example, see Ref7] and references therein general prob_lem of reducing the number of degrees of free-
Over the last two decades this has had hundreds of citationdo™M 10 be simulated, we restrict our attention to turbulence
Originally it was believed that it could describe phenomenalat is both homogeneous and isotropic, and work in the
ranging from nonlinear deposition to bunching in traffic wave number—time domain. We consider, in particular, the

gueues. Nowadays such beliefs have fallen away, yet it igtationary'cas_e in which energy is supplied to the fluid at a
still intensively studied as a system in its own right becausdc.c; which is equal to the viscous dissipation. We specify

it is tractabl d . ting feat h Shat the energy is injected at low wave numbers. It is then
IL1S tractablé and possesses Interesting features such as NG, sfarreq by nonlinear mixing to high wave numbers,
linearity and dissipation.

AR >, .__where it is dissipated by viscosity. For sufficiently large val-
Itis in this spirit that we study the model system obtained, o5 of the Reynolds number, there will be an intermediate

by combining the Navier-Stokes equation with the momen{ange where the effects of input and dissipation can be ne-
closure propased by Edwards. We do not claim that the reglected and where the energy is transferred through wave
Su|tS W|” apply d|reCt|y to pure NaV|er'St0keS turbulence. number Space' on average, at a constant rate equambis
But we do argue that the results are interesting in their owns known as the inertial range of wave numbers.
right; and, as they are based on ideas of conservation and The length scales for this problem are set by the physical
symmetry, that they provide strategythat is worth trying in  size of the box containing the turbulence and, for a fluid with
the case of turbulence as they suggest a way of taking intmolecular viscosityr, by the Kolmogorov length scale
account the phase coherence effects that are neglected in thg v%/¢)* In a spectral representation, as adopted here, it
usual viscositylike models. is convenient to work with the Kolmogorov dissipation wave
It should also be emphasized that by choosing the theorgumberky, where
proposed by Edwardgl] we are not asserting its superiority 1a
to other such theories. We have given a detailed and com- 1 3
parative account of the main turbulence theories elsewhere 7 ( ) :
[5,6] and our choice of the Edwards theory is largely dictated
This expression shows how the largest wave numbers depend
on the parameters andv. For the purposes of fully resolved
These remarks apply only to numerical simulation of isotropicnumerical simulation of the Navier-Stokes equation the usual
homogeneous spectral turbulence and not, for instance, to the use ifle of thumb is to take the maximum wave number in the
the Smagorinski model in real flows. discrete representation equal to

(2.1
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FIG. 1. A schematic view of the filtered fully resolved energy

spectrum. In this work, we take. to be somewhere in the inertial
range of wave numbers.
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FIG. 2. Truncated energy spectrum.

spectrum corresponding to a large-eddy simulation in which
the Fourier modes have been cut off somewhere inside the
inertial range ak=k;. The figure also indicates the bound-
ary conditions that must be satisfied. First, it is necessary to
represent the average energy flux through modé.. Sec-

A detailed numerical investigation of this point by McComb, ond, the phase coupling between the resolved and subgrid

Hunter, and Johnstofil0] indicated that a slightly higher

modes should be taken into account. In the following sec-

value k.~ 1.84 is needed in order to capture the dissipa-tions we discuss the technical aspects of such a partial simu-
tion in the system properly. It is also worth noting that thelatlon,_conSIderlng in turn conservation of momentum, con-
same investigatiof10] revealed that if one cuts the turbu- Servation of energy, and the energy flux.

lence off at a wave numbéde.= 0.5y, this would leave the
turbulence energ¥ virtually unaffected but would reduce
the dissipation rate to about 40% of its correct value.

A. The momentum equation

To study the large-eddy approach we require the low-pass

In Fig. 1 we show the universal, high wave number formfiltered equation of motion for the velocity components with
of the spectrum schematically. We also indicate the low- andvave numbers less thaq (denoted by—). This equation

high-pass filtering of the velocity field inta™ (k) and

also contains contributions from the subgrid modenoted

u*(k), corresponding to the resolved and subgrid scales, reby +). The filtered equation is obtained from the Navier-
spectively. In Fig. 2 we show, also schematically, a truncatedstokes equation and can be written as

J
— + pk?
s vk

where theu"u™ term is called theReynolds termwhile the
u~u’ term will be referred to as theross termhereafter.

Uz (K) =My (K) D 8 [z (U (D+2u (s () +uj (Hud ()],

(2.2

As we shall see later, the cross term can be decomposed into
two nonsymmetric forms(which in fact correspond to

This is the solenoidal form of the Navier-Stokes equation inu*-Vu~ andu™-Vu™, respectively, in real spage

wave number spad®]. Greek indices take the values 1, 2, or

The equation corresponding to the situation shown in Fig.

3 and the summation convention for repeated indices is em2 can be written in the form
ployed. Note that in the interest of conciseness, we do not

show the time dependence of the Fourier modes explicitly,

but it is implied, e.g., that, (k)=u, (k,t). Following the
usual practice, we use a symmetrized fornMbf,,(k), thus
Ma/}’y(k):(Zi)71[kBDay(k)+k'yDaB(k)]! (23)

where the projectoD ,4(K) is expressed in terms of the Kro-
necker delta as

(2.9

P
— + vk?
ot

W, (K)=M g, (K) 2 8y jiwj (W, (1)

TR [w (k)] (2.9
whereF [w™ (k)] is a symbolic representation of the second
and third nonlinear term@.e., the Reynolds and cross tepms
on the right-hand side of E@2.2). In practice, we reduce the
number of degrees of freedom by choosing an approximate
form of F_[w™ (k)], such that it represents the effect of the
u™ (k) modes in some sense. In a truncated simulation we
calculatew,, (k) on the interval B=k=<k., with values ofe
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and v such thatky>k., and with initial condition obtained plying each term of Eq(2.2) by u_ (—k,t), and averaging
by reference to the full solution at some tirte thus over realizations of the~. The result can be expressed as

w(k,0)=u"(k,to). (2.6 E(0=T() =T~ () + T-—*(K)

J 2
[(9'( +2vk
In principle, we can assess the accuracy of this partial -
simulation by comparing individual realizations with, and +T k), 2.9
without, the high-wave-number modes being present. Fo\gvhere
this purpose we introduce a measure for the erry) (in
modek over a time intervalty,to+T] by
T (K)=27k2M 45, (K) 2 S (U (—K)ug ()us (1)
A(T)= max |u (k,t)—w (k,t)], (2.7
to<tstg+T +c.c., (2.9

whereu™ (k,t) is the low-wave-number filtered part of the _ ) B U
solution to EqQ.(2.2) for the same values of andv. Essen- T (K)=47k Mgy (K) 2 Sicji{ug (—Kug(uy (1)
tially, this criterion tests the predictability of the lokv-

modes, given some perturbation of the higmodes. The +c.c., (2.10
reverse problem—predictability of the highmodes given

some perturbation of the lokw-modes—has been discussed —_ .. . _ 2 ' gt

in detail by Machiels{ll]. T (k)_Zﬂ'k Maﬂy(k)E 5k,]+|<ua( k)UB(])UY(l»

Evidently, Eq.(2.5 is no longer the NSEwhich would

require all modes & k=<Kk,,, 10 be resolvegand the success
or failure of Eq.(2.5 in satisfyingA,(T)<4, whered is ; :
some error criterion, clearly depends on how weiw~ (k)] and c.c. stands for complex conjugate. Note that in each case

is the d cal fth I e labeling wave numbék is restricted to the range<9k
represents the dynamical consequences ot the sma —sca\kc, so that this is the spectral energy equation for the
flow features. T
| nciol hould be able to ch ._explicit modes only.
i nt plr:|n0|E) ek, we Shotlh t tﬁ avle d(')t'c Aoo1s_e<ag _apprtC?X|ma- Now, we wish to examine in particular the effects of
ion to F[w' (k)] such that the conditioA(T)<d'is salis- — +-—+ ) anqT-++(k) on E(k) as a preliminary to consid-

ge? for_ a@rbﬂrafr;lz Smat'!ﬂ- d-l.-f?'s fo':!o:/vs frotr_n the clas_5|catlh ering how they should best be modeled. One particularly
ﬂe.grmmt!sm. (:h € partiai d %ren +|akequa lon 39\{6[,?'”9 ¢ Crelevant aspect is to consider the conservation properties of
uid motion: the missing modew” (k) are predictable, a this equation by using it to derive an expression for the en-

least in principlg, given thev™ (k). Of course the price one ergy flux across the cutoff wave number. We present this
would then pay is the need to solve the complete NSE for th?\ext before actually focusing on the propertieSaf * and
w™ (k) and so there would be no computational saving. Thusl--+'+ in Sec. Il

it follows that some coarse-graining operation is necessary to
obtain an approximation té-[w~ (k)] from the resolved
modesw™ (k) and so reduce the size of the computational
task, compared to obtaining” from Eq.(2.2). In fact, it has As we saw in the context of Fig. 2, an important boundary
recently been demonstrated that this coarse graining can lm@ndition that must be satisfied by a truncated spectral simu-
done algorithmically in a constrained numerical experimentation is obtained by considering the average energy flux
[12], where a feedback loop gave rise to both eddy viscositghough the cutoff wave numbég. We consider this in more
and eddy noise. detail now. By integrating E¢(2.8) overk from zero tok.,

In general, one might hope to achieve a greater degree afe have
coarse graining by means of some form of average. How-
ever, it is difficult to deal with the subgrid components in the iJ
momentum equatiof2.2) directly, because of the nature of at
the averaging required. That is, one must average over sub-
grid modes (™) while holding the explicit scalesu(’) con-  with the energy flux across wave number given by an
stant[1,13], and this involves the concept of a conditional integral over the explicit modes:
average. We shall return to the question of how we should
obtain an approximation t& ,[w™ (k)] after we have con-
sidered the equations for the energy spectrum and the spec-
tral energy flux.

+c.c., (2.11)

C. The energy flux

kcE(k)dk+2kaCk2E(k)dk= ~TI(ky), (2.12
0 0

H(kc)z—ffdkﬁ"*(k)+T"+(k)+T*++(k)]

:Hcross(kc)+Hreyn(kc)- (2.13

B. The energy equation Here the contribution from the first term in the integral van-

From the momentum equation we move on to the energyshes due to symmetry, and the contributions from the cross
equation for the explicit modes, which is derived by multi- term and the Reynolds term are given, respectively, by
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Iy

kC
Hcrosékc):_J’o T__+(k)dk, (2.14

kc max
Moyr(ke) = — fo T (k)dk. (215

That is,IT, ¢y (k) is the energy transfer rate due to the Rey- 1
nolds term, whilell.,s{K.) is the energy transfer rate due
to the cross term.

Ill. ENERGY EQUATION BASED ON CLOSURE THEORY

In order to estimate the order of magnitude of the Rey- 1 2
nolds and cross terms, we shall rely on a model equation for
the energy spectruri(k). This equation is derived on the P,
basis of the closure theory proposed by Edwad]swhich .
is the EFP. This theory is known to retain all the symmetries ]
of homogeneous, isotropic turbulence. As EFP also possesses Kk
good qualitative and quantitative behaWibi, we expect that k Ke max
our results will be representative of_ the full Navier-Stokes FIG. 3. The integration region af..,(K) is denoted by 3 while
Systgm. The adva_ntgge of t.he. analytical model is that we Caffe integration region fof ¢,s{K) is deynoted by 1 and 2. Note that
obtain results valid in the limit of large Reynolds numbers,Pl and P, are the significant points referred to in Sec. VA and
which would be far beyond the range of fully resolved directzppengix c.
numerical simulations that are presently feasible. Moreover,
through analysis we can evaluate the contributions to the

various terms stemming from different regions of wave num- jtk=l=j-k j+I=k (3.6
ber space.
As shown in Appendix A, EFP leads to the form which is the condition thak, j, andl make up the three sides
5 of a triangle. The integration region that defifEs™ * [the
2 okl E(0 =Tk zf dlf diT(kl.j), (3.1 Reynolds ternT .y (klk)] is I,j>ke which is marked as 3
at <’ (k)=T(k) imtl.p, 3.1 in Fig. 3, wherek,,, is the largest wave number. The inte-
gration region that specifiesT~* [the cross term
where TerosdK|ko)] is 1=k, j=<k, or vice versa, marked as 1 and
2 2, respectively, in Fig. 3.
T(k,1,j)= k_IjH(k'I DKL D k1L, HOMQ>G) —Q(K)1, In order to clarify the energy dynamics arising from vari-

ous regions in wave number space, we need to evaluate
B2 T+ andT ** by integratingT(k,l,j) as given in Eq.
N oL2:2., 1212 L2 2 (3.2 over the appropriateand! regions. Specifically, these
H(k, 1)) =2k 7+ 1517 - k=), (3.3 quantities are defined by

[k, L) =(k+1+])(k+T=])(K=T+])(I+]—k),

3.4 _ Kmax Kmax .
349 Treyn(klkc):T ++(k):ﬁ< lek dj T(k,1,j),

o(k1j) =[w(k) + o) +o(j)] . (3.5 3.7
In these expressions(k) is the rate of decay of modeand

contains the renormalized or effective turbulent viscosity. Tosd K|ke)=T" (k)
Also, Q(k) is the spectral density such that

kmax kC kC kmax
_ L . .
E(k) =4mk2Q(K). Uk al foi |, d'ch dj}“k"’”
We shall refer to the terr®(1)Q(j) in Eq. (3.2) as thedif- (3.9
fusion term This term acts on mod& as noise since its Before beginning our estimation ofyn(k|k;) and

contribution may be positive or negative. The termT,,s{k|k.), numerically in Sec. V as well as analytically in
Q(HQ(kK) is (in the context of the Fokker-Planck equation Sec. IV, we remark that, as given by Eq(3.4) is always
called thedynamical friction term although for brevity we positive. In contrastH, as defined by E(.3.3) changes sign
shall refer to it as thdriction term (The word “viscosity” in the triangle strip. The dark region in Fig. 4 denotes the

will be kept for another purpose. region whereH is negative. In the other ard4 is positive.
The integration region for the variablgeand| is the strip  For this reason, the combination &i(k,l,j) and Q(j)
(see Fig. 3 bounded by —Q(k) determines the sign of the contributionTk) from
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5 In the following we consider two cases with<k.: (i) k

<k. and(ii) k=k.. Note thatR(k) is the dynamical friction
(or friction for shory and S(k) is the diffusion term.

Vk A. Asymptotic range: k<k,

after that we consider regions 1 and 2 together.

1. The Reynolds term: Region 3
We denote the contribution from Region 3RoandS by

Taylor expansion in powers df/k.. From Eqgs.(4.12 and
(4.13, and retaining the largest term, we obtain

8 kmax [ Q(I) a(l) 1 .Q(ke)
— _ 15 < 72 7 ]
. Rs=5k “kc dl[w(l)l (1+ c )] 5k°w(kc)}'
0T 3 3 i 5 (4.4)
FIG. 4. lllustration of the behavior dfl, as defined by Eq3.3),
and plotted here als/k*=2(j/k)2+ (1K) (1/k)2— (j/k)2—1]. In 53:8 ks[ kaaxm[ Q(')2|2( 1+ @) ] _ L Q(kc)z}
ke o(l) 5 5°° w(ky) |’

the dark regiorH is negative. Outside this regidt is positive. In 3
this figure @)=v2—1 and p)=2+1. 4.5

various regions of wave number space. In the Reynolds termyyhere
for instance, where&)(j) —Q(k) <0, the contribution from

j<I is mostly positive, while that fromi>1 is negative. For o' B 1Q"(l)
an accurate evaluation a numerical calculation is needed to ~ ®()=1+ o)’ and g(h)=a(l)=2 Q(l) -
establish the finalnegative result. (4.9

In the inertial regiona=5/3, =9, and

32 . 5Q(ke)
_ %53
Ra=15Kke w(ky)’

IV. ANALYTICAL ESTIMATES OF ENERGY TRANSFER 2
and 53=§k5k3Q(k°) (4.7)
25" S o(ky)

In this section we obtain analytical results for a number of
limiting cases which clarify and support the subsequent nu-
merical analysis and illustrations. We estimate the relativelhe ratioR(k)/k> is the eddy viscosity. Comparing; with
order of magnitude of the contribution to the ensemble-R;Q(k), we have
averaged closure of the Reynolds term with< |, <k, ax as
compared to that of the cross term arising from regions 1 and Ss _ 3 Q(ke) 4.9
2 in Fig. 3. Since there is no agreed analytical result for the R3Q(k) 20 Q(k) - ’
general form of the energy spectrum at a finite Reynolds ) . .
number, our calculations are based on the inertial-range KolVe note that the ratio on the left-hand side of &8 is
mogorov spectrum only. small as long a&<Kk;.

Here we estimate the contributions from the regions of
integration specified as 1, 2 and 3 in Fig. 3. In order to

2. The “cross term”: Regions 1 and 2

estimate the right-hand side of E@.1) we rewrite it as The result of a similar calculation is
1 1 !
o w Ry+ Ry= 22 K2 1+ = (k) + = 9) k|, @9
EJFZVI( E(k):E[S(k)—R(k)Q(k)], 4.9 ) 6 6lw/ Q
2 1 1/Q%' w
_ 21,6
where S1+S,=2— KK 1+ (ko) + 5 Z) Ekcl.
1
R(k)=f dlf djWH(k,I,j)I(k,I,j)f)(k,I,j)Q(I), (4.10
(4.2 In the inertial range this becomes
- 1 . . | . 10Q(K) 5 4 T QK e
S(k)—f dIJ' djWH(k,|,j)|(k,|,j)0(k,|,j)Q(|)Q(j). R1+R2—§ (ko) kek®  and Sl+82—§ (ko) kek
4.3 (4.1)
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If we compare Eq(4.11) with Eq. (4.7), then we have A. Numerical computation
The integration region of oyn(k|k.) in Eq. (3.7) is re-
Ri+R, 25k S+ 175 k reyn\Kfc
1 2z and 1—82— (4.12  gion 3, as depicted in Fig. 3, which contains a large region in

Rs 48 ke S3 72 k' which H is negative. The integration ovéandj converges,
§0 that the numerical evaluation is straightforward.

The integration region off¢,,s{k|k.) in Eq. (3.8 con-
sists of regions 1 and 2 in Fig. 3. Whether or not a negative
region ofH is included in the integration region depends on
the value ofk./k. We must be careful with the integration in
the vicinity of =0 corresponding to the poif, in Fig. 3
and =0 corresponding to the poim;, which arises when
k—Kk.. As shown in Appendix C, however, the contributions
from those regions are negligible.

_ For the purposes of the numerical computation it is help-
ul to express, I, andj in terms of dimensionless variables
andz, thus

which indicates that the contribution of the cross term can b
neglected whek<k, .

In conclusion, the dominant contribution to the Reynolds
term in the asymptotic rangek€k;) comes from the fric-
tion. The diffusion contribution is smaller by a factor
Q(k)/Q(K) than the friction one. The cross term also re-
ceives contributions from friction and diffusion. However,
both contributions are smaller than the corresponding contri
butions to the Reynolds term by a factiotk.. Both these
conclusions, which are based on an order of magnitude est%'
mation, would also hold true for a realistic spectrum at a
finite Reynolds number, because a real viscous spectrum Y
known from experiment to fall off faster than a power with _ _ -
increasing wave number. K=k 1=key, J=kez. ©.D

To complete the description, the following forms of the en-
B. Near-cutoff range: k=k. ergy spectrunQ(k) and the modal decay rate(k) are in-

In this range, it is very difficult to estimat® andSin  troduced:
various regions analytically. However, we can establish the

limiting values ask goes tok.. For k=~k, we obtain Q(K)=(C/ )&% 3 (kI Knmay)

Re~Ri+R,, S~Si+S,, ReQ~S;. (4.13 =(Clme%; % M (ax, (52
If we take into account the numerical prefactors obtained (k)= gs 323G (k/K nqy) + vk2= e Yk 223 (ax),
from the leading order in the Taylor expansi@,+S, ap- (5.3
pears to overwhelm th&; term ask approaches the cutoff
wave numbeik;. Near the cutofk, the contributions from () =g(x)+ (bx)*3 (5.4)

the Reynolds term and the cross term will be of the same
order of magnitude. In this region a more detailed compari- ~
son of the two must rely on numerical computation to which"V€7€8=Ke/Kmaxandb=Kpa,/kq with kq= (e0/v%) " C
we turn in the following section. is the Kolmogorov prgfacto(lspec'tral constaptando is the
analogous constant in the inertial range form of the modal

decay ratew(k). The scaling functiond(x) and Z(x) are
unity for x<1 and decay exponentially foe=1.

In this section we focus on the separate energy transfer Substituting Egs.(5.1)—(5.3) into Egs. (3.7) and (3.9
rates due to the Reynolds and cross terms. We cannot copields
sider the individual contributions from the friction and diffu-
sion separately, as for computational reasons it is necessary ol Al
to work W_lth the totall kernel. This matter is explained in Treyn(k|kc):k;lf dyf dz T(x,y,2), (5.5
more detail in Appendix C, where we establigbr the Kol- 1 1
mogorov spectrufnthat if the various contributions are com-
puted separately, the integration in the cross term will di- . N
verge in the regioh~0 andj~k. Convergence relies on the Tcross(k|kc)=kcl{ fa dyf dz
vanishing of the factoiQ(j)—Q(k) as can be shown by 1 0
expanding in powers dfk. This is related to the well known . .
fact that early closures were incompatible with the Kolmo- + fa dyf dz
gorov spectrum, due to pathological behavior of the response 1 0
integral [6], despite the fact that the energy equation was

V. NUMERICAL EVALUATION OF ENERGY TRANSFER

T(X,Y,2), (5.6)

well behaved. where
C% 1 y W (ay) [z 3 (az) —x ¥ (ax)]
T(x,y,2)= . XyZH(x,y,z)I (x,Y,2), x2’3§(ax)+y2’3§(ay)+22’3§(az) . (5.7
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TABLE I. Treyn(k|kc) and T,.sdk|ke) as functions ofk=k/k.. Note that each transfer term has been
divided by the common facta€?e/ (ko).

X 0.01 0.05 0.1 0.2 0.3 0.5 0.8 0.9 1.0

~Treyn(X) 0.27 0.44 0.54 066 074 086 095 096 095
~TeosdX) 0001 0008 0020 0054 011 032 119 190 548

We base the following analysis of the energy transfer on this Let us compare our computet{k) with some previous
dimensionless formulation. results. Kraichnan used the test field moldéd] while Chol-

let and Leisure applied the very similar EDQNM4]. We
shall make a comparison with the work of the latter authors

B. Numerical analysis of energy transfer . X
who gave an approximate expression X{k) as

at infinite Reynolds number

We assume the infinite Reynolds number case, which im- ,
plies that the Kolmogorov spectrum holds over the entire X(k)=D'{0.267+9.21exp—3.03k./k]}, (5.10
wave number space, and the scaling functions becixe

={(x)=1. Obviously, more general forms 6fx) and{(X)  \whereD’ is a numerical constant. We compared our predic-
and a specific value of the paramesr K. /Kpax would be  i5ns arising from EFP with Eq5.10) in Fig. 6. HereD' is
needed at a finite value of the Reynolds number. These aggjysted such that both results agree with each other in the
pects will not be considered here. asymptotic regimek<k.. The solid line represents the
present numerical calculation, and the dotted line corre-
L Treyn(klke) and Teroso(Klke) sponds to Eq(5.10. Evidently, the qualitative agreement is
The transfer spectra reyn(k|kc) and T.osdk|lks) are reasonable while some quantitative differences remain.
listed in Table | as functions ok=k/k.. As we are only It is also of interest to compare our findings with predic-
interested in their relative magnitudes at this point, we haveions obtained from direct numerical simulation. One such
divided each of them by a common factefe/(k.o).Note  example is described by Domaradatial.[16], whose esti-
that T,s{K|Kc) is negligible in comparison to the Reynolds mate of the viscosity5.8) was based on DNS. However,
term asx—0 but overwhelmsT e, n(k|k;) for k/k;=0.8.  since their simulation did not have an extended inertial re-
This means that the cross interaction is important only neagion, the viscosity obtained did not have a proper asymptotic
the cutoff. The decrease T os{k|k:) ask tends to zero is region fork<k. in which the viscosity tends to be constant.
in agreement with the previous analytical estimates of thén fact, from the DNS it was observed that the viscosity

energy transfer for the case<k, in section IV A. could even become negative. Nevertheless, the cusp in the
We may use the energy transfer raig) to introduce the vicinity of k=k. was found to be a characteristic feature.
effective viscosity, as Our result is consistent with this.
T(k) 8
Sv(k)=— ———. (5.9
2k?E(k)

Following a standard convention, we can exprésgk) in 6
terms of a dimensionless effective viscosity, denoted here by
X(k), thus

1/2 41
, (5.9

E(ke)
k

C

5wm=Amm{

whereA is a numerical constant. Figure 5 shows the effective 2 |
viscosity X(k)=x"*3T(x) for the total transfer rateT
=Treynt Tcross- IN the asymptotic regiok<k it is constant

as expected, while in the vicinity &f=k_ there is a cusp. In

Fig. 5 we also include the effective viscosities from 0
Treyn(klke) andTe osdk|ke) separately. It is noteworthy that
Xeyn(K) is almost independent &f it decreases slightly ds
approaches the cutoff wave number. On the other hand FIG. 5. Dimensionless effective viscositi¥¢k), X eyn(k), and
XcrosdK) shows a cusp in the vicinity &=k in agreement  x_ (k) as defined by Eq5.9). Evidently the Reynolds term de-
with results from other investigationsl0,14—16. For k  termines the asymptotic regiok/lk.—0 while the cross term is
=0.7k; the Reynolds-term viscosity is dominant. responsible for the cusp.
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8 ; T T T T

%4 -2 r Teo(K) \\\\ 1
N\
\
-4t N A
\
27 6| 1
Present 6 !
-8 I B
907 10" 10° _10 . . . .
Kk, 0.0 0.2 0.4 0.6 0.8 1.0
FIG. 6. Comparison of the present subgrid effective viscosity
with the EDQNM[14] result. FIG. 8. TermsT;(k) andT.,(k) as defined by Eqg5.12 and
(5.13 corresponding to regions of integration 1 and 2, respectively,
2. Decomposition of Teyn(k|kc) in Fig. 3. Evidently,T.,(k) is responsible for the “cusp,” consistent

with the fact that by symmetry,(k) gives zero contribution to the

We further decomposed the effective viscosity, (k) flux throughk, : see Eq(5.16
. (5.16.

into friction and diffusionterms, denoting these by, and

X:q4, respectively. We do this using the decomposition of

Treyninto R3Q(k) andS;, whereR; andS; are given by Eq. _ _

(4.14 and (4.15, then invoking Eqs(5.8) and(5.9) for the The transfer rate associated with the cross term shows a

effective viscosity. cusp and in order to find out more about the origin of the
SinceX,4 is found to be negative, we have plottég and ~ cusp we first decomposell, o k|k.) into two parts:

—X,q In Fig. 7. It should be noted that,; is much larger

than — X,4 in the entire wave number region, and that the Terosd klke) = Tei(K) +Tea(k), (5.19

magnitude of—X,4 decreases very rapidly dsdecreases. ) ) , i

The analytical estimates provided in Sec. IV A confirm theWhich correspond to the regions of integration 1 and 2, re-

dominance of friction over diffusion de<k,. The numeri- SPectively, in Fig. 3, and where

cal evaluation extends these estimates and shows that this

3. Decomposition of T, s K|Kc)

property is maintained up to the region whérek. . Tea(K)= delfkcdj T(k1,j) (5.12
ke Jo
15
and
) kC
e L Tcz(k>=f djf di T(k,1j), (5.13
ke Jo
10 | 1
with T(k,l,j) as given by Eq(3.2. We showT.;(k) and
T.o(k) in Fig. 8 from which it is clear that the main source of
the cusp inT;os{K) is Tc»(K). This is not entirely surprising
as we have
05 ke . ke ke
f Tcl(k)dsz dlf de' dk T(k,j,l)=0,
0 ke 0 0
(5.19
//
00 _)f'd,('i)/ since
10 107 10° _ _
Kk, T(k,j,1)=-T(j,k,I),

FIG. 7. Dimensionless effective viscositi¥s;(k) andX,q(k), ~ and soT.i(k) does not contribute to the energy transfer
showing the relative contributions of the friction and diffusion throughk,. Note that both components @f,,s{k) change
terms to the Reynolds stress. their sign ask decreases.
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2 ' - - ' One can readily estimatd ., n(k.) andIl¢os{kc) by inte-
grating Tyeyn(X) and T,osdX) Overx. The result is

C C%
(3) Hreyn(kc):O-SOT and Hcross(kc)zo-esTu
@ (5.16

=2 I
which indicates thatIl;,sd{k:;) is comparable with
IT;eyn(ke) for the inertial range spectrum, bil,q, (k) is

(1) still the larger. Note thatl.,,s{K.) is due to the single de-
composition component.,(k), as defined by Eq(5.14),
because the integration @f,(k) gives a null result by sym-
metry.If we substitute the two expressions making up Eq.
(5.16 into the boundary conditiohl (k;) =&, we have

-4 |

-6 I

_8 . . s s C2e
0.0 0.2 04 0.6 0.8 1.0 1.48—=¢ (517)
k/k, o ’

C

FIG. 9. Further decomposition df,(k) into contributions from g that the numerical coefficient of the viscosityis related
different integration regions for wave numbdrsas discussed in to the Kolomogorov constai€,=4C as

Sec. VB3.

_ 2_ 2
Since the cusp arises mainly from,(k) it is of interest 0 =1.487=0.092%. (.18
to determine which part of region 2 in Fig. 3 contributes
most to T.,(K). In order to determine the main interaction
contributing toT.,(k), we divided the integration region for
| into four strips of equal width. That is, from E(g.6) and
Fig. 3, we may define region 2 as

If we use a currently accepted value k§=1.6, we find
0=0.24. (5.19

It is worth checking the correctness of the value obtained
for Il;,0sd ke) by employing another expression, originally
derived by Kraichnari17]. It is shown in Appendix D that

) o o ) . the energy fluxil;,s{k.) can be converted to the expres-
This region is now further subdivided into four smaller strips gjgp,

defined as(1) k,—0.7%=I=k.—k; (2) k.—0.5k=I=k,

—-0.7%; (3 k,~02%=I=k,—0.5; (4) k.=l=k. o ke ke

—0.25%. Figure 9 shows the contributioriE(y’ (k) corre- Hcross(kc)=J ko’ d|f dj T (k1,j). (5.20
sponding to integration over the individual segments ke JO - JO

=1,2,3,4 identified above. We see that the contribution from ) ] .
the first segmenfr,gl)(k) is responsible for the cusp in Evaluating this expression we reached the same result as

2 . . ; .
Tco(K). The contributions from the other segments are noj’qross(kc) in Eq. (5.16 which confirms our previous calcu-

only considerably smaller but in addition they are seen t ation. .
vary rather smoothly. This result will be helpful when in Sec. In order to know how much of the energy in the wave

VI we consider how the cross-term can best be modeled neA-MPer region less thak is drair?ed by the Relynolds and
the wave number cutoff. cross terms, we integrat€q, (k') and T¢,s{K’) over O
<k’'<k:

C. Energy flux acrossk

K/kg
In this section we estimate the energy flux across the cut- Mreyn(k)= = fo Treyn(X")dx’,

off wave numbelk, numerically using the expression given (5.21)

in Eq. (2.13. We recall

Kike
1 Hcross(k):_fo Terosd X' )dX,
1_[reyn( Ke)=— J;) Treyn(x)dx

and results foll,., (k) andIl,s{k) may be found in Fig.
10. From this figure we see that the Reynolds term contrib-
utes to the flux at any wave number, while the cross term
L only becomes important at wave numbers close to the cutoff.
n K.)= _f T x)dx, 51 The cross term drains only a small amount of energy from
crosd ko) crosd X) ®19 wave numbers less thanwhenk=0.5k; .

and
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1.0 ; ; ; ; mol e
08 \

: I)lstant interactions
0.6 | '
04 |

_/\A : : 5 : : k

k k2 % k K max

0.2 ¢ FIG. 11. For modes wittk<k./2 only distant interactions are
possible.
0.0 resolved scales into two parts, vigl) The asymptotic range;
0.0 k<k¢/2; (2) the near-cutoff rangek=Kk_/2.

A. The asymptotic range: k=k/2

FIG. 10. Hreyn(), Herosdk), and their ratio. In this range the interaction of the resolved scales with the

subgrid scales can be regarded adistant interaction as
VI. FORMULATION OF A “LARGE-EDDY” SIMULATION illustrated in Fig. 11. The Reynolds term, as judged both by
] ) ) spectral energy balan¢see Fig. »and by flux(see Fig. 10,

In this section we will put forward a model to representis dominant over the cross term, and this suggests that it will
the dynamic effects of modes wik®k. on the evolution of  also be dominant in the momentum equation for this range of
the explicit modes wittk<k.. This model will be based on wave numbers.
our results for the Reynolds and cross terms obtained in the In addition, the fact that we have shown that the main
previous sections. The proposed model is required to repreeontribution to energy transfer associated with the Reynolds
sent the effects of the terf,[w~ (k)] which appears in the Stress comes from the dynamical friction, offers more funda-
truncated momentum equation. In the first instance we wilf"€ntal support to the proposal that we should represent this

incorporate properties and considerations involving the speéerm by an eddy viscosity. Hence we propose to include an

tral energy balance and flux, from which all phase informa—eﬁemlve eddy viscosity in Eq2.5). The coefficient of the

. . o .~ eddy viscosity should be modified from an asymptotic value
tion about the solution has been eliminated by constructio y y ymp

X ) Ncalculated fork<k;., to a value depending ok/k., as
After that, the element of phase coupling will be addressed ipqwn inX,¢(K) in Fig. 7.

Sec. VIB2. The inclusion of the diffusion effect is subsidiary; but in
In order to do this we will find it convenient to first rede- practice it could prove quite helpful to include it. The re-

fine the asymptotic and near-cutoff ranges of wave numberguired eddy viscosity is hence basedXn,,(k), as shown

in a more specific way than we did in Sec. IV. Let us supposeén Fig. 5. This is computed fronT y(k), and is almost

that j>1 for simplicity. independent ok in this (asymptotig range of wave numbers.
First we consider the case whémr k.. Here both com-

ponents are in the subgrid region and the subgrid stress is B. The near-cutoff range: ko/2<k<Kk,

represented by the Reynolds term only. The situation is simi- |n, this range, modé is affected by both local interactions
lar to the asymptotic range in Sec. IV. where k,<j<2k and distant interactions wherekZ |
Next turn to the case<k.: that is, the cross term. From <Kk, ,«, as shown in Fig. 12. Here we should make it clear
Eg. (3.6) we havel>j—k, so the lowest value of wave how the termlocal interactionis used in the present paper.
number is | ,,;,=k.— k. Depending on whethér,;,>k, that ~Some authors such as Ohkitani and_ K[dS] have used the
is, k<k¢/2; orl min<k, that is,k>k./2, the situation is quite t€rm to represent the interacti&n=1~j and in that context a
different. As can be seen from Table I, in the former case thée'm such ad<k~j is called a distant interaction. In the
energy transfer contribution from the cross term can be igPresent discussion we are concerned with the magnituée of
nored as compared with the Reynolds term. In the latter cas@ndj only. We refer to an interaction such les:j as a distant
one cannot neglect the contribution of the cross termkAs inteéraction, while an interaction such ks j is a local inter-
approaches., the cross term overwhelms the Reynoldsaction. In this subsection we consider how the stresses can be
term? treated in order to represent both distant and local interac-

Hence it will be convenient to decompose the range of thdions.

1. Distant interactions: 2k<j <K ax

2This is actually a slight overstatement and we shall make a more In this model, as we saw in Sec. IV A, the distant inter-
careful assessment of this point in Sec. VID 3. actions are mainly represented by the dynamical friction part
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Bl el i
1
Distant interagtions k
Local interaction FIG. 13. Triangle of wave vectors representing the cross term.
: \ Hereg is the unit vector along.
I = v ® : o
A s ug(.—ug(@=(-a) Vaug(aq). (6.2
k2 ok ke & kg Then the error is expected to become small whenq| is
FIG. 12. For modes with>k/2 both distant and local interac- Small. This is realized whekyj is chosen ag with j being a
tions are possible. unit vector along, where

of the Reynolds term. Thus the arguments put forward in S s kel

Sec. IV A for the asymptotic range<k./2 will also hold for J7a=i—kd=|1- T 6.3

the distant interactions in the near-cutoff range w2

=<k=k.. In practice, one might encounter problem«kif.x ~ The wave vector configuration in such a case is depicted in
is not much larger thank? or if the energy spectrum decays Fig. 13, wherel is much smaller thark, andj is slightly
very rapidly with wave number, as encountered in the dissifarger thark.. This is the most important configuration con-
pative region. Then the asymptotic form of the viscositytributing to the cross term as confirmed by the decomposition
would need to be modified. However, this amounts to a reef T ,(k): see Sec. VB 3 and Fig. 9.

striction on the choice ok, as compared td,,,x. In the We further propose that in the case of the near interaction
typical casek,,,e2K.. Accordingly, the use of a constant in the cross term:

viscosity resulting from the Reynolds term seems appropri-

ate, and this is supported by the results ¥g,,(k), as , _
shown in Fig. 5. 7 Maﬁy(k)Ej: Sij+Ug (J,Hu (1), (6.9

2. Local interactions: k<j<2k u;(j,t) is approximated by the velocity field nearest in the

From both Fig. 5 and Table | we can see that the crossvave vector space to the velocity field on a resolved scale:
term dominates ak— k.. This suggests that the cross term
is mainly responsible for the local ipteractions and this is lNJZ(i,t)=MUE(kJ,t)G(J'/kc)ZMW;E(kcf,T)G(J/kc),
easily shown as follows. As we saw in Sec. V B 3, the most (6.5
important contribution from the cross termTis,(k); and, in
particular, the contribution from small values loin the in-  whereG(j/k.) signifies how the amplitude should be modi-
tegral. From Eq(5.13 for T.,, we note that ak—k. and fied depending on wherk. andj are located. Herg: is a
|—0, the triangle condition requirgs—k.. Hence only lo-  constant factor taking into account any possible phase mis-
cal interactions are involved. match, so that it is less than or equal to unity. For simplicity,

As the Reynolds term has been shown to take care of thae shall assume that it is unity. jfis in the inertial range,
distant interactions, which is the “random” aspect of the then
coupling, it seems logical to assume that the local interac-
tions represent the “deterministic” aspect, and this provides G2(jlky)=(jlk) 3 (6.6)
us with a hint as to how we should model it.

The following proposal seems to be the simplest model The advantages of the above approximation may be stated
that is consistent with the findings from the numerical analy-as follows. Proper models for the parametrization of the ef-
sis in Sec. V. Obviously the success of any model can béects of the small scales should also include phase coupling
tested only by examining simulation results obtained with it,between the explicit and the implicit modes. The phase ef-
and this is the subject of ongoing research. fects are considered to a certain extent in this model, because

We propose to approximateg(j,t) by using the arbitrary the phase oﬂg(j,t) is expected to be not so different from
resolved-scale velocity field, (q,t) and assuming a deter- that ofuy (kj,t). The phase effect signifies that the modeled
ministic connection between the two. Writim@(j,t) as term works as a forward transfer of energy for some of the

L B L B time and a backward transfer of energy at other times.
ug(j,)=ug(at) +ug(j.t) —ug(a,t)], (6.1

we want to make the error, that is, the second term on the C. Propased “subgrid” model

right-hand side in Eq(6.1), as small as possible. If the error  In this subsection we propose a model for the momentum
is Taylor expanded, we have equation based on the preceding energy considerations.
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1. Asymptotic range: ksk/2 Then we can express E.5 as

In the first instance, we assume that the cross term does
not contribute to energy transfer in this wave number rangeez\[._ + k2
Hence Eq(2.5) can be written as dat

W, (K, =M 5,(K) X Wy (WS (1,1)

= vi(klk) k2w, (k1)

P
— + vk?
at

W, (K, =M 5,(K) X Wy (WS (1,1)

—i 20 Sk, D oK) U (WS (1),
— v, (Klko) k2w, (K, 1). (6.7) L

(6.12
The eddy viscosity, (k|k.) is taken to be due to the entire

Reé/r_mlds termrepresented by Eq5.9) with constantX ey, whereu; (j,t) is given by Eq(6.5). However, since the term
and is

E(k.)\? E(k.)\? > S ixikgD o (K UL (L, WS (1,1) (6.13
Vr(k|kc):0'81/3kg4/3: O_KOI/Z( %) :02( E( C)) ’ = kI+j% B~ ay B Y
C C
(6.9 does not contribute to the energy we include E13 in
Eq. (6.12 which has the benefit of keeping the model equa-

where we have also made use of E§8). Note that once we tion symmetrical. In total, the proposed model equation for
have considered the need for continuity with the model in th&k=K¢/2 is

near-cutoff range, we shall modify this equation to the form
given later in Eq(6.17.

J
— 1+ pk?
P vk

W, (K, =M 5,(K) X W5 (WS, (1,1)

2. Near-cutoff range: k/2=<k<k, ”
. . — v, (klko)k“w, (k,t)
In this wave number range the cross term is roughly of the

same order of magnitude as the Reynolds term, as far as the ~ _

energy is concerned. Hence we propose a mixed model con- +2Maﬁy(k)|21 Sk1+jUp (1, W, (LY).

sisting of the viscosity plus the similarity term approximated ’

by Eq. (6.5 (6.14
In order to write the model equation we have to know

which cross term must be kept. The cross term in the equa- 3. Continuity at k=k/2

tion for u, (k,t) in Eq. (2.2) has two parts: Finally, we want to formulate the full model such that
expression$6.12 and(6.14) are continuous &=k./2. The
s _ + o - difference is only the last term in E@6.14), which yields
I% O +iLk;Dap(k)ug (1,0U, (11 Terosdk=Kk¢/2) as far as the energy is concerned. Table |
L B indicates that the ratio of ;;os{K) 10 Treyn(K) is 0.37, so,
+kgD oy (K)ug (0, (LD ]. (6.9 althoughT (k) is larger thanT,.K), the latter is cer-
tainly not negligible. To compensate for it, we should add a

The energy contribution is obtained by multiplying 8.9 contribution from the cross term to E¢6.7) in the form of
by u, (—k,t) and averaging, as before, over realizations: the additional eddy viscosity

_ 2~
3 Al (u (k-0 Gokeu (L) velklke kW, (K1), 619
B B . wherev(k|k.) is the eddy viscosity due to the cross tetm.
T (=kH)-um(Lhk-u(j,0))]. (6.10  As can be seen from Fig. 5.(k|k.) decreases dgk. does.

Its dependence ok/k, can be estimated from its asymptotic

Wher_l we further co_nsider the _energy_tranSfer, the S?COHfbrm_ As we saw earlier the contribution from the cross term
term in Eq.(6.10 vanishes upon integration ovier so thatit s 5 factork/k, smaller than the Reynolds term, so that
corresponds td¢;(k). From these considerations we infer , (k|ko)>k/k. . Therefore we put

[ C Cc*

that we should retain the first term in E@.9) as the neces-
sary cross term: ve(k|ke) =0.74 k/ke) v, (K/Ke), (6.16

—i> S koD (KU, DU (1), 6.1 where the coefficient is selected in such a way that
'%: KD ag()Ug (10U, (LD 61D ) k)= 0.37 atk—ky/2.

3This is preferable, because it is almost independent of wave num-“In the asymptotic region € k=<k./2 the cross term also behaves
ber. like a viscous term.
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With this in mind, the model equation fdt<k./2 as
given by Eq.(6.7), is now replaced by

a 2 —_ —_— -
R WG (k) =M 5, (K) 2 8w (1OW, (1)

— v, (Kke) (1+0.7&/ k) k2w, (K, t).
(6.1

4. Optimization

PHYSICAL REVIEW E67, 026317 (2003

Lastly, we consider the physical significance of the divid-
ing wave numbehk. . In view of the preceding discussions,
the magnitude ol measures how much the cross term is
taken account of in the form of eddy viscosity. Larger values
of A mean that the cross term is represented to a greater
extent by the eddy viscosity. Smaller values\a$ignify that
the more general dynamical effects of the cross term are
taken into account.

VIl. CONCLUSION

The essential difficulty of the turbulence problem is often
characterized as being the interplay between randomness and
coherence. A purely random problem could be solved by the
methods of statistical mechanics while a purely coherent
problem would be deterministic and hence treatable by the
methods of classical mechanics. In considering how to re-
duce the number of degrees of freedom in a humerical simu-
lation of the Navier-Stokes equations, we have used the
Edwards-Fokker-Planck energy equation as a guide to the
modeling. This allowed us to identify which subgrid stresses
can be modeled as if of purely random origin and which
subgrid stresses can be plausibly treated as deterministic. In
the former case, we introduce an effective eddy viscosity; in
the latter case we assume that subgrid modes are slaved to
explicit modes. This procedure is facilitated by dividing the
explicit scales into two wave number ranges, with a corre-
sponding modeled equation of motion for each. In this way
we can retain the primary effects arising from the nonlinear
coupling between explicitor resolved modes and implicit
(or subgrid modes.

Specifically, fork<k./2, we have Eq(6.17), which we

In the model just given we have divided the wave numberf€peat here for convenience:
region into two parts ak=Kk./2. Although this choice of a
dividing wave number is intuitively plausible it is also arbi-
trary. In practice, it may be better to adopt a more general
approach and choose as the dividing wave nunkizekk,,
where \ is a constant, such thatsO\<1, which may be

P
— + vk?
ot

W, (K D) =M (k) 2 8 W5 (W, (1,1)

— v, (K|Ke) (1+0.7&/ ko) K?wW, (K, ).

treated as an optimization parameter. Then Ket\k, we
have

Jd
—+ k2

TR W (KD =M o, (K) 2 B W (1W, (L)

— v (KIk)[ 1+ FON)kIK k2w (K, ).
(6.18

HereF(\) is determined in such a way that the energy trans-

fer rate is continuous &=\Kk.:

XerosdN)

FN= RN

(6.19

where X osd K/Ke)/ Xreyn(K/Kc) is given in Fig. 14. Fork
=Mk, we have the same equation as Ej14). It should be

noted that if the value ok is chosen too large, we may not

use the asymptotic form of.(k|k.) proportional tok/k,
such as Eq(6.16).

Also, for k=k./2, the model equation is E¢6.14), thus

J
— 1+ pk?
g vk

W, (K1) =M 45, (K) 2 Sy W (j,OW, (1,1)

- Vr(k| kc)kZW;(krt)

+2Maﬁ7<k>|2j Scaviup (1 OW (1Y),
(7.1

whereﬁg(j,'g) is given by Eq.(6.5. In both equations,
v, (k|k.) is given by Eq.(6.8).

Of course, this set of equations is only valid for the model
system obtained by combining the Navier-Stokes equation
with the EFP equation for the energy transfer. For instance,
we identified the separate energy flux due [g.,, and
IT;0ss in EqQ. (5.16). Substituting the result for the constant
o in Eq. (5.18 into the two relationships of E@5.16) results
in the values:
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Mieyn(ke)=0.54 and Il oss=0.46¢. iterative conditional averagind]. Numerical assessments of
that work have been given elsewhé¢i®]. In that approach,
Presumably, these particular numbers are characteristic of thge work with a conditional average of what is here called the
EFP closure and we conjectdrtnat for pure Navier-Stokes Reynolds term. We have made it clear that this conditional
turbulence both fluxes will be exactly equal to 8.5 mode elimination can only contribute to a renormalized dis-
Evidently, this set of equations can only be assessed fQ§ipation rate and does not fully include phase-coupling ef-
Nawer—Stokes turbulence by actua.IIy using them to perforntacis. The view was expressét, 10] that, despite the fact
a partially resolvedor large-eddy simulation apd compar that the “cross term” does not contribute to the conditional
ing the results to those from a fully resolved simulation with average, the dissipation rate is determined to a good approxi-

the same initial conditions as far as the large scales are con-_.. :
cerned. This will be the subject of further work and in whichrﬁ1at|0n py the RG-type procedure. This was supported by a
calculation of the Kolmogorov prefactét].

we will also explore the optimized form that is obtained In the present work we see that the “cross term® and the

h | Ed6.1 Egs.(6.1 19. - .
when we replace Ed6.17) by Egs.(6.18 and(6.19 Reynolds term make similar contributions to the energy

Naturally, we hope that this investigation will lead to L
techniques that are of practical value in the study of fluigtransfer ratgsee Eq(5.16]. The two situations may not be

turbulence but at the same time we hope to shed more ligtffiréctly comparable. Here we eliminate modes, such kbat

on the underlying structure of the EFR]. Renormalized <k=Kkqax, In ONe operation. In the conditional mode elimi-

perturbation theories of this kind have suffered unjustifiegnation[1] we eliminate modes progressively in shells, res-

neg|ect for many years and EFP is of particu|ar interest irpaling between each elimination. This point requires elucida-

that it has a strong physical basis and is founded on th&on and will be the subject of further work.

well-known fact that single-point velocity distributions in

turbulence depart only slightly from the Gaussian form. One

reason for this neglect is the difficulty involved in testing  APPENDIX A: THE EQUATION FOR THE ENERGY

such theories in practical situations that invariably involve SPECTRUM

both anisotropy and inhomogeneity. The application to the

modeling problem in large-eddy simulation may be one way !n order to estimate the order of magnitude of the Rey-

round this difficulty, as the small eddies can often be taken agolds term and the cross term we examine the energy equa-

isotropic and homogeneous. tion obtained by a closure approximation. According to
Lastly, we mentioned at the outset that we have previ{E20 in McComb’s book[6] the equation for the energy

ously approached the present problem using the method spectrumE(k)=4mk?Q(k) becomes

Jd
(E+2vk2)E(k)=T(k)=4Trk2J d3de3I S(k—j—1)x2B(j,k,) Ok, 1,HQAN[Q(j)—Q(k)], (A1)

where

o(k,j,l)= (A2)

oK)+ w(j)+o(l)

and

k*—2k3l w+kl3u

j,k,h=L(k,k—=1)=
B(j,k,h=L(kk=1) pasTE

(1= p?), (A3)

as given by(E24), whereu is a directional cosine betwednandl. Then the energy transfer ratg¢k) becomes

T(k)=4wk2f d® L (k,k=D ok, [k=1,NQQ(k=1D=Q(K)]. (Ad)
For the numerical computation it is convenient to use the integration varibblesj instead ofl and x,
k2+12—j2 d i di
w= " dw= g4l (A5)

SWe believe that this can be proved; but, at worst, arguments can be put forward to suggest that this is the case.
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In this notation

1
1_M2=4k2|2(k+l+j)(k+|—j)(k—|+J)(|+J_k)!

k4—2k31 4+ K13 = (1/2)[ 2k%j 2+ 12(12— k2= j?)].

ThenL(k,k—1) can be expressed as

L(k,k—l):8k+2j2H(k,l,j)l(k,l,j), (AB)
where

H(k,1,j)=2Kk?j2+1%(12—k2—j?), (A7)
Lk, 1)) = (k+T+])(k+T=])(k=T+])(1+]—k). (A8)

Substituting Eqs(A5) and (A6) into Eq. (A4) yields
T(k)=%2J dlfdj%H(k,l.j)l(k.l,i)ﬁ(k,j.|)Q(|)[Q(j)—Q(k)]- (A9)

|

Ko=1.65 o=0.25, (B4)

Sincek, j, andl make a triangle, the integration region for

o which agree with currently trusted values.
andj is bounded to g y

I+j=k, j+k=I=j—k. (A10) APPENDIX C: NUMERICAL CONVERGENCE
OF TCI’OSS(klkC)
In the above we employ,j instead ofl, x, as this is more

. The integration region is regions 1 and 2 in Fig. 3. Since
convenient for our present work.

Q()~I1~*" we have to be careful with the integration in

the vicinity of =0 andj~0; this situation is realized only
APPENDIX B: EVALUATION OF THE KOLMOGOROV whenk~k, .

CONSTANT AS A CONSISTENCY CHECK

At this point we make a digression: can we determine the 1.1—0
Kolmogorov constant? One way of determining the viscosity

is to make use of Eq5.9) The dangerous region is around B Fig. 3, which is

specified as

(C?elak)T(x) B c281’3k74,3T(x) l+k=j=k., k=I=k.—k. (C1
2K082/3k1/3 - 2Kgo © y13C
(B1) Since we are interested in the integration coming fileak
—k.~0, a new variablg =t+k is introduced in place of.
The present numerical calculation give&x)/xY*= —1.22in ~ Then the regior{C1) is changed to
the asymptotic region. Substituting this af=Ky/4 into
Eq. (B1) yields [=t=6, k.:=1=6, (C2

V(k| kc) =-

1.2XKee® . whereé is defined as
V(k| kc) = ch . (BZ)
5=k.—Kk, (C3
The frequency defined in E@5.3) is just v(k|k.)k?, so that
so thaté$ is regarded as small. We substityte k+t into
1.2X, various terms in Eq(3.2) to retain the highest term only:
o= 5o (B3)

1

—okd | —AK2(12_+2 -
H=2K!, 1=2k2(07=8), f= 5,

Combining Eq.(5.18 with Eq. (B3) yields
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Again the divergence gt~=0 does not occur.

1
=i QUI—Q(k=tQ"(k). (CH
APPENDIX D: ENERGY TRANSFER RATE ACROSS k.
Then Eq.(3.8) becomes
Notice thatT(k,l,j) in Eqg. (3.2 is antisymmetric under
47%Kk*Q’ (k) QW (., ., the exchange of andj. However, it is not symmetric under
Terosd Klke) = (k) J'gdl [ J;dt(l —tt the exchange of andl. In order to confirm the energy con-
servation, it is helpful to introduce the symmetric transfer

2k4 "(K | T AW
_ mkQ( )fde()(—2|252+64+|4). rate T(k,1,j):
w(k) S I
= HKEDEKLL) . .
(C5) T(k,l,J)=T{[H(k,I,JHH(k,J,I)]
If we use Q(I)~1"3 the contribution from the lower _ _
bound 8 becomes (114/5%)"%, implying no divergence at XQMHQ()—=[H(kI,HQ()
all. The numerical calculation can be safely carried out. +H(K,j,DQ(j)]1Q(K)}. (D1)
2.]—0 With this definition it is easy to show that
Here we are concerned with the region around pojnnP N 5 5
Fig. 3. If we introduce a new variable such last+k, the Tk 1,j)+T(,k1)+T(,j,k)=0. (D2)

integration region is specified by
Note that the above identity holds irrespective of whierk

j=t=6, k.=j=6. (C6) and] are located. It means thatTik,|,j) is approximated in
Under this situation a certain way, it must satisfy EqD2) as far as the energy
conservation is concerned.
. 1 Using Eq.(D1) the energy transfer rate acrdgsis writ-
— 3 — 20:2 2 —
H=2k?t, |=4k"(jc—17), 0—m, ten as
1 1 kC kC kC kC kmax
==, Q(H=Q(k). (c7 —H(kc)=f dk f dlf dj+f dlf dj
Ik 0 0 0 0 Ke
Then Eqg.(3.8) become Kmax ke Kmax Kmax ~
a3.8 S +f dlf dj+f d|f dj}T(k,l,j).
47%3Q(k) [ Q)= Q(K) (i o0 ok
_ ; 212
Tcross(k“(c)_ w(K) J(sd] J f&dt(] t)t (D3)
m2k3Q(K) [ .Q(j)—Q(k) The first integration in Eq(D3) vanishes becaude |, j are
= J i located in the same wave number region. In the second inte-
ok) Js ]
gral the dummy variablelsandj are exchanged, while in the
X(—2j28%+ 8*+j%). (C8)  third onek and| are exchanged:

|
kC kC kmax ~ kC kmax kC ~
fdkf dlf djT(k,I,j)+f dkf dlf djT(k,1,j)
0 0 ke 0 Ke 0

kC kC kmax ~ kC kmax kC ~
=J de dlf dkT(j,I,k)+f dlj ko djT(,k,j)
0 0 ke 0 ke 0

Kmax ke ke L~ . =~ .
=ch dkj0 dlf0 di[T(j,1,k)+T(,k,j)]

kmax kC kC ~
=—f dkf dlj djT(k,1,j). (D4)
K¢ 0 0

In deriving the last line we have used E®2). If T(k,l,j) is approximated in a wrong way, there will be no guarantee that
the second line of EqD4) is the same as the last line.
Finally, we have the fludl(k;) defined as
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[T (ke)=

kmax kC kC kC kmax kmax
J dkf dlf dj—f dkf dlf dj
ke 0 0 0 ke ke

PHYSICAL REVIEW E67, 026317 (2003

Tk,1,j). (D5)

Since the integration regions oveandj are symmetric in Eq(D5), we can replace the symmetrized transfer fatey an

kmax kC kC kC kmax kmax
H(kc):[J dkj dlf dj—f dkf dlj dj}T(k,I,j). (D6)
ke 0 0 0 ke ke
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