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Spectral intermode coupling in a model of isotropic turbulence

T. Nakano,* W. D. McComb,† and B. J. Geurts‡

Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
~Received 1 May 2002; published 27 February 2003!

We investigate the nonlinear coupling between the so-calledexplicit modes, identified with wave numbersk
such that 0<k<kc , andimplicit modes, defined such thatkc<k<kmax. Herekc is an arbitrarily chosen cutoff
wave number andkmax is the ultraviolet cutoff as determined by viscous damping. The stresses arising from the
nonlinearity in the Navier-Stokes equations are categorized as ‘‘implicit-implicit’’~or ‘‘Reynolds’’! and
‘‘explicit-implicit’’ ~or ‘‘cross’’!. These arise from dynamic coupling between different regions of wave number
space. Their respective effects on momentum, kinetic energy, and energy flux are assessed. The analysis is
based on a model system comprising the Navier-Stokes equations and the Edwards-Fokker-Planck energy
equation@S. F. Edwards, J. Fluid Mech.18, 239 ~1964!# which is known to retain all the symmetries of
homogeneous, isotropic turbulence. The Reynolds stress is found to be responsible for long-range energy
transfers. It can be represented by an effective viscosity and is mainly determined by dynamical friction. The
cross term is more complicated, involving both diffusive and frictional effects. For long-range coupling it can
be expressed as a modification of the effective viscosity, while for short-range coupling it may be modeled on
the assumption that implicit scales are slaved to explicit scales. Thus, both the random and coherent aspects of
intermode coupling in turbulent flows are relevant in the cross term. The imposition of a continuity requirement
on energy transfer leads to a new parametrization that represents the effect of absent modes in a truncated
spectral simulation, and takes into account the phase-coupling~coherent! effects, as well as the usual viscosi-
tylike ~random! effects.

DOI: 10.1103/PhysRevE.67.026317 PACS number~s!: 47.27.Gs
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I. INTRODUCTION

There is currently a great deal of interest in the study
physical systems that are governed by partial differen
equations driven by noise or random forces. In the case
fluid turbulence, the controlling symmetry is the conserv
tive exchange of energy among the Fourier wave num
modes. This is a noteworthy feature because it imposes
nificant constraints on any attempt to reduce the numbe
degrees of freedom while retaining the primary flow featur

If we eliminate certain modes from the description, th
in principle we must compensate in some way for the abs
modes. In particular, it appears essential to at least main
both the kinetic energy of the system and the rate at wh
energy is transferred through its modes. This problem
recently been studied by employing a conditional averag
progressively eliminate modes in wave number shells, be
ning with the highest wave numbers@1#. Each coarse-
graining operation was followed by a rescaling, based on
effective turbulence viscosity that arises as a result of
conditional average. This sequence of operations was ca
out in the viscous range of wave numbersk, where the Rey-
nolds number based onk is less than unity. This permits th
unambiguous use of perturbation theory. The iteration
found to reach a fixed point that corresponds to the onse
scaling behavior~the so-called ‘‘inertial range’’ of wave
numbers!. Although the procedure is a form of renormaliz
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tion group~RG!, a clear distinction should be drawn betwe
this approach and the use of RG in the study of driven
drodynamics@2#, along with later attempts by other worke
to apply that work to turbulence: for a discussion of th
aspect see the paper by Eyink@3#.

In the present paper we approach the mode interac
and elimination problem from a different direction. We co
sider the Fourier modes of the velocity fieldu(k,t) on the
wave number interval 0<k<kmax, wherekmax is chosen to
be large enough to capture all the energy dissipation of
turbulence@1#. We divide the velocity field intou2(k,t), for
0<k<kc ~referred to as the explicit scales!, andu1(k,t) for
kc<k<kmax ~the implicit scales!. The wave number cutoff
kc is normally taken to be in the inertial range but is othe
wise arbitrary. In particular, we examine the coupling b
tween the explicit and implicit scales from the point of vie
of momentum, energy, and energy flux. Apart from its r
evance from a fundamental point of view, this analysis c
be used to formulate a parametrization of the dynamic c
sequences of small-scale turbulent motions on the evolu
of large-scale flow features that are retained explicitly in
numerical simulation.

In order to study this problem, we represent the turb
lence by a model system corresponding to the theory of
wards @4#. This allows us to make both analytical and n
merical predictions about the interscale coupling throu
integration of the energy transfer kernel over the appropr
regions ofk space and has the advantage over, e.g., di
numerical simulations that one can obtain results for a
trarily large values of the Reynolds number. Moreover, co
tributions to the Reynolds and cross terms arising from d
ferent regions ofk space can be evaluated in detail.

However, in view of the interdisciplinary nature of turbu
©2003 The American Physical Society17-1
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lence research, it may be as well at this stage to clarify
use of the term ‘‘model system.’’ In physics it is usual
distinguish betweentheories that may involve approxima
tions of a general kind, such as truncation of expansions
consistent order, andmodelsthat involve more specific as
sumptions and which normally involve the introduction
one or more constants that must be fixed by comparison
experiment. In the context of turbulence, examples oftheo-
ries include the direct-interaction approximation~DIA !, the
Edwards-Fokker-Planck theory~EFP!, the self-consistent-
field theory~SCF! and the local energy transfer theory~LET!
whereas examples ofmodels include the test-field mode
~TFM! and the eddy-damped quasinormal Markovian the
~EDQNM! @5,6#. In the context of engineering fluid dynam
ics the theoretical activity is referred to as ‘‘modeling’’ and
practice the distinction between theories and models
rarely, if ever, made. Nevertheless, in effect, the definition
the term ‘‘model’’ is the same in both cultures.

It is when we consider the use to which we put a mo
that a chasm yawns between the two cultures. In enginee
~and many other scientific disciplines, including, sometim
physics! a model~or mathematical model! is intended to de-
scribe an actual practical situation and is expected to h
predictive ability. It is judged essentially by this criterio
can it predict outcomes in real situations? If it cannot, the
will be rejected.

In fundamental physics the situation is completely diffe
ent, and models are often studied in their own right as in
esting physical systems. At the macroscopic level, we h
the recent development of interest in driven~stochastic! dif-
fusion equations such as the Kardar-Parisi-Zhang~KPZ!
equation~for example, see Ref.@7# and references therein!.
Over the last two decades this has had hundreds of citati
Originally it was believed that it could describe phenome
ranging from nonlinear deposition to bunching in traf
queues. Nowadays such beliefs have fallen away, yet
still intensively studied as a system in its own right beca
it is tractable and possesses interesting features such as
linearity and dissipation.

It is in this spirit that we study the model system obtain
by combining the Navier-Stokes equation with the mom
closure propased by Edwards. We do not claim that the
sults will apply directly to pure Navier-Stokes turbulenc
But we do argue that the results are interesting in their o
right; and, as they are based on ideas of conservation
symmetry, that they provide astrategythat is worth trying in
the case of turbulence as they suggest a way of taking
account the phase coherence effects that are neglected i
usual viscositylike models.1

It should also be emphasized that by choosing the the
proposed by Edwards@4# we are not asserting its superiori
to other such theories. We have given a detailed and c
parative account of the main turbulence theories elsewh
@5,6# and our choice of the Edwards theory is largely dicta

1These remarks apply only to numerical simulation of isotro
homogeneous spectral turbulence and not, for instance, to the u
the Smagorinski model in real flows.
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by its comparative simplicity, although its relationship
fundamental concepts in statistical mechanics is also of
terest.

The organization of this paper is as follows. In Sec. II w
review the basic equations and formulate the problem m
precisely. Section III presents and discusses the EFP m
used to describe the energy dynamics. Analytical, asympt
estimates for the energy transfer, obtained with this mo
are collected in Sec. IV while a more comprehensive num
cal study is presented in Sec. V. The consequences of
analysis for a large-eddy simulation are described in Sec
in which a subgrid model is proposed, consistent with
intermode coupling in the EFP model. This is followed b
our conclusions in Sec. VII.

II. THE BASIC EQUATIONS AND STATEMENT
OF THE PROBLEM

In the context of fluid dynamics, turbulence presents
ther a moment closure problem, if one favors the use
statistical theory, or a problem of many length and tim
scales, if one attempts a direct numerical simulation of
Navier-Stokes equations~NSEs! on a computer@5,6#. Over
the last few decades, there has been growing interest
hybrid approach, known as large-eddy simulation. As
name suggests, the largest scales of the motion are simu
on a grid in real (x) space, with a closure model being em
ployed to account for the nonlinear coupling to the ‘‘su
grid’’ scales. Statistical theory may be adopted to obtain
appropriate closure model, but similarity considerations a
rigorous properties of the turbulent stresses can also be
to arrive at suitable models@8,9#.

In order to elucidate some fundamental aspects of
general problem of reducing the number of degrees of fr
dom to be simulated, we restrict our attention to turbulen
that is both homogeneous and isotropic, and work in
wave number–time domain. We consider, in particular,
stationary case in which energy is supplied to the fluid a
rate«, which is equal to the viscous dissipation. We spec
that the energy is injected at low wave numbers. It is th
transferred by nonlinear mixing to high wave numbe
where it is dissipated by viscosity. For sufficiently large va
ues of the Reynolds number, there will be an intermedi
range where the effects of input and dissipation can be
glected and where the energy is transferred through w
number space, on average, at a constant rate equal to«. This
is known as the inertial range of wave numbers.

The length scales for this problem are set by the phys
size of the box containing the turbulence and, for a fluid w
molecular viscosityn, by the Kolmogorov length scaleh
5(n3/«)1/4. In a spectral representation, as adopted here
is convenient to work with the Kolmogorov dissipation wa
numberkd , where

kd5
1

h
5S «

n3D 1/4

. ~2.1!

This expression shows how the largest wave numbers dep
on the parameters« andn. For the purposes of fully resolve
numerical simulation of the Navier-Stokes equation the us
rule of thumb is to take the maximum wave number in t
discrete representation equal to
of
7-2
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kmax51.5kd .

A detailed numerical investigation of this point by McCom
Hunter, and Johnston@10# indicated that a slightly highe
valuekmax'1.8kd is needed in order to capture the dissip
tion in the system properly. It is also worth noting that t
same investigation@10# revealed that if one cuts the turbu
lence off at a wave numberkc50.5kd , this would leave the
turbulence energyE virtually unaffected but would reduc
the dissipation rate to about 40% of its correct value.

In Fig. 1 we show the universal, high wave number fo
of the spectrum schematically. We also indicate the low- a
high-pass filtering of the velocity field intou2(k) and
u1(k), corresponding to the resolved and subgrid scales
spectively. In Fig. 2 we show, also schematically, a trunca

FIG. 1. A schematic view of the filtered fully resolved ener
spectrum. In this work, we takekc to be somewhere in the inertia
range of wave numbers.
i
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em
n
itl
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spectrum corresponding to a large-eddy simulation in wh
the Fourier modes have been cut off somewhere inside
inertial range atk5kc . The figure also indicates the bound
ary conditions that must be satisfied. First, it is necessar
represent the average energy flux through modek5kc . Sec-
ond, the phase coupling between the resolved and sub
modes should be taken into account. In the following s
tions we discuss the technical aspects of such a partial s
lation, considering in turn conservation of momentum, co
servation of energy, and the energy flux.

A. The momentum equation

To study the large-eddy approach we require the low-p
filtered equation of motion for the velocity components w
wave numbers less thankc ~denoted by2). This equation
also contains contributions from the subgrid modes~denoted
by 1). The filtered equation is obtained from the Navie
Stokes equation and can be written as

FIG. 2. Truncated energy spectrum.
F ]

]t
1nk2Gua

2~k!5Mabg~k!( dk,j1 l@ub
2~ j !ug

2~ l!12ub
1~ j !ug

2~ l!1ub
1~ j !ug

1~ l!#, ~2.2!
into

ig.

nd
s

ate
e
we
where theu1u1 term is called theReynolds term, while the
u2u1 term will be referred to as thecross termhereafter.
This is the solenoidal form of the Navier-Stokes equation
wave number space@5#. Greek indices take the values 1, 2,
3 and the summation convention for repeated indices is
ployed. Note that in the interest of conciseness, we do
show the time dependence of the Fourier modes explic
but it is implied, e.g., thatua

2(k)5ua
2(k,t). Following the

usual practice, we use a symmetrized form ofMabg(k), thus

Mabg~k!5~2i !21@kbDag~k!1kgDab~k!#, ~2.3!

where the projectorDab(k) is expressed in terms of the Kro
necker delta as

Dab~k!5dab2
kakb

uku2
. ~2.4!
n

-
ot
y,

As we shall see later, the cross term can be decomposed
two nonsymmetric forms~which in fact correspond to
u1

•“u2 andu2
•“u1, respectively, in real space!.

The equation corresponding to the situation shown in F
2 can be written in the form

F ]

]t
1nk2Gwa

2~k!5Mabg~k!( dk, j 1 lwb
2~ j !wg

2~ l!

1Fa@w2~k!#, ~2.5!

whereFa@w2(k)# is a symbolic representation of the seco
and third nonlinear terms~i.e., the Reynolds and cross term!
on the right-hand side of Eq.~2.2!. In practice, we reduce the
number of degrees of freedom by choosing an approxim
form of Fa@w2(k)#, such that it represents the effect of th
u1(k) modes in some sense. In a truncated simulation
calculatewa

2(k) on the interval 0<k<kc , with values of«
7-3
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andn such thatkd@kc , and with initial condition obtained
by reference to the full solution at some timet0, thus

w2~k,0!5u2~k,t0!. ~2.6!

In principle, we can assess the accuracy of this par
simulation by comparing individual realizations with, an
without, the high-wave-number modes being present.
this purpose we introduce a measure for the error (Dk) in
modek over a time interval@ t0 ,t01T] by

Dk~T!5 max
t0,t<t01T

uu2~k,t !2w2~k,t !u, ~2.7!

whereu2(k,t) is the low-wave-number filtered part of th
solution to Eq.~2.2! for the same values ofe andn. Essen-
tially, this criterion tests the predictability of the low-k
modes, given some perturbation of the high-k modes. The
reverse problem—predictability of the high-k modes given
some perturbation of the low-k modes—has been discuss
in detail by Machiels@11#.

Evidently, Eq.~2.5! is no longer the NSE~which would
require all modes 0<k<kmax to be resolved! and the succes
or failure of Eq. ~2.5! in satisfying Dk(T)<d, whered is
some error criterion, clearly depends on how wellF@w2(k)#
represents the dynamical consequences of the small-s
flow features.

In principle, we should be able to choose an approxim
tion to F@w2(k)# such that the conditionDk(T)<d is satis-
fied for arbitrarily smalld. This follows from the classica
determinism of the partial differential equation governing t
fluid motion: the missing modesw1(k) are predictable, a
least in principle, given thew2(k). Of course the price one
would then pay is the need to solve the complete NSE for
w1(k) and so there would be no computational saving. Th
it follows that some coarse-graining operation is necessar
obtain an approximation toF@w2(k)# from the resolved
modesw2(k) and so reduce the size of the computatio
task, compared to obtainingu2 from Eq.~2.2!. In fact, it has
recently been demonstrated that this coarse graining ca
done algorithmically in a constrained numerical experim
@12#, where a feedback loop gave rise to both eddy visco
and eddy noise.

In general, one might hope to achieve a greater degre
coarse graining by means of some form of average. H
ever, it is difficult to deal with the subgrid components in t
momentum equation~2.2! directly, because of the nature o
the averaging required. That is, one must average over
grid modes (u1) while holding the explicit scales (u2) con-
stant @1,13#, and this involves the concept of a condition
average. We shall return to the question of how we sho
obtain an approximation toFa@w2(k)# after we have con-
sidered the equations for the energy spectrum and the s
tral energy flux.

B. The energy equation

From the momentum equation we move on to the ene
equation for the explicit modes, which is derived by mul
02631
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2(2k,t), and averaging

over realizations of theu2. The result can be expressed a

F ]

]t
12nk2GE~k!5T~k!5T222~k!1T221~k!

1T211~k!, ~2.8!

where

T222~k!52pk2Mabg~k!( dk,j1 l^ua
2~2k!ub

2~ j !ug
2~ l!&

1c.c., ~2.9!

T221~k!54pk2Mabg~k!( dk,j1 l^ua
2~2k!ub

2~ j !ug
1~ l!&

1c.c., ~2.10!

T211~k!52pk2Mabg~k!( dk,j1 l^ua
2~2k!ub

1~ j !ug
1~ l!&

1c.c., ~2.11!

and c.c. stands for complex conjugate. Note that in each c
the labeling wave numberk is restricted to the range 0<k
<kc , so that this is the spectral energy equation for
explicit modes only.

Now, we wish to examine in particular the effects
T221(k) andT211(k) on E(k) as a preliminary to consid
ering how they should best be modeled. One particula
relevant aspect is to consider the conservation propertie
this equation by using it to derive an expression for the
ergy flux across the cutoff wave number. We present t
next, before actually focusing on the properties ofT221 and
T211 in Sec. III.

C. The energy flux

As we saw in the context of Fig. 2, an important bounda
condition that must be satisfied by a truncated spectral si
lation is obtained by considering the average energy fl
though the cutoff wave numberkc . We consider this in more
detail now. By integrating Eq.~2.8! over k from zero tokc ,
we have

]

]tE0

kc
E~k!dk12nE

0

kc
k2E~k!dk52P~kc!, ~2.12!

with the energy flux across wave numberkc given by an
integral over the explicit modes:

P~kc!52E
0

kc
dk@T222~k!1T221~k!1T211~k!#

5Pcross~kc!1P reyn~kc!. ~2.13!

Here the contribution from the first term in the integral va
ishes due to symmetry, and the contributions from the cr
term and the Reynolds term are given, respectively, by
7-4
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Pcross~kc!52E
0

kc
T221~k!dk, ~2.14!

P reyn~kc!52E
0

kc
T211~k!dk. ~2.15!

That is,P reyn(kc) is the energy transfer rate due to the Re
nolds term, whilePcross(kc) is the energy transfer rate du
to the cross term.

III. ENERGY EQUATION BASED ON CLOSURE THEORY

In order to estimate the order of magnitude of the R
nolds and cross terms, we shall rely on a model equation
the energy spectrumE(k). This equation is derived on th
basis of the closure theory proposed by Edwards@4#, which
is the EFP. This theory is known to retain all the symmetr
of homogeneous, isotropic turbulence. As EFP also posse
good qualitative and quantitative behavior@5#, we expect that
our results will be representative of the full Navier-Stok
system. The advantage of the analytical model is that we
obtain results valid in the limit of large Reynolds numbe
which would be far beyond the range of fully resolved dire
numerical simulations that are presently feasible. Moreo
through analysis we can evaluate the contributions to
various terms stemming from different regions of wave nu
ber space.

As shown in Appendix A, EFP leads to the form

F ]

]t
12nk2GE~k!5T~k!5E dlE d jT~k,l , j !, ~3.1!

where

T~k,l , j !5
p2

kl j
H~k,l , j !I ~k,l , j !u~k,l , j !Q~ l !@Q~ j !2Q~k!#,

~3.2!

H~k,l , j !52k2 j 21 l 2~ l 22k22 j 2!, ~3.3!

I ~k,l , j !5~k1 l 1 j !~k1 l 2 j !~k2 l 1 j !~ l 1 j 2k!,
~3.4!

u~k,l , j !5@v~k!1v~ l !1v~ j !#21. ~3.5!

In these expressionsv(k) is the rate of decay of modek and
contains the renormalized or effective turbulent viscos
Also, Q(k) is the spectral density such that

E~k!54pk2Q~k!.

We shall refer to the termQ( l )Q( j ) in Eq. ~3.2! as thedif-
fusion term. This term acts on modek as noise since its
contribution may be positive or negative. The ter
Q( l )Q(k) is ~in the context of the Fokker-Planck equatio!
called thedynamical friction term, although for brevity we
shall refer to it as thefriction term. ~The word ‘‘viscosity’’
will be kept for another purpose.!

The integration region for the variablesj and l is the strip
~see Fig. 3! bounded by
02631
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j 1k> l> j 2k, j 1 l>k, ~3.6!

which is the condition thatk, j, andl make up the three side
of a triangle. The integration region that definesT211 @the
Reynolds termTreyn(kukc)] is l , j .kc which is marked as 3
in Fig. 3, wherekmax is the largest wave number. The inte
gration region that specifiesT221 @the cross term
Tcross(kukc)] is l>kc , j <kc or vice versa, marked as 1 an
2, respectively, in Fig. 3.

In order to clarify the energy dynamics arising from va
ous regions in wave number space, we need to eval
T221 and T211 by integratingT(k,l , j ) as given in Eq.
~3.2! over the appropriatej and l regions. Specifically, these
quantities are defined by

Treyn~kukc!5T211~k!5E
kc

kmax
dlE

kc

kmax
d j T~k,l , j !,

~3.7!

Tcross~kukc!5T221~k!

5F E
kc

kmax
dlE

0

kc
d j1E

0

kc
dlE

kc

kmax
d j GT~k,l , j !.

~3.8!
Before beginning our estimation ofTreyn(kukc) and

Tcross(kukc), numerically in Sec. V as well as analytically i
Sec. IV, we remark thatI, as given by Eq.~3.4! is always
positive. In contrast,H, as defined by Eq.~3.3! changes sign
in the triangle strip. The dark region in Fig. 4 denotes t
region whereH is negative. In the other areaH is positive.
For this reason, the combination ofH(k,l , j ) and Q( j )
2Q(k) determines the sign of the contribution toT(k) from

FIG. 3. The integration region ofTreyn(k) is denoted by 3 while
the integration region forTcross(k) is denoted by 1 and 2. Note tha
P1 and P2 are the significant points referred to in Sec. V A an
Appendix C.
7-5
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various regions of wave number space. In the Reynolds te
for instance, whereQ( j )2Q(k),0, the contribution from
j , l is mostly positive, while that fromj . l is negative. For
an accurate evaluation a numerical calculation is neede
establish the final~negative! result.

IV. ANALYTICAL ESTIMATES OF ENERGY TRANSFER

In this section we obtain analytical results for a number
limiting cases which clarify and support the subsequent
merical analysis and illustrations. We estimate the rela
order of magnitude of the contribution to the ensemb
averaged closure of the Reynolds term withkc, j ,l ,kmax as
compared to that of the cross term arising from regions 1
2 in Fig. 3. Since there is no agreed analytical result for
general form of the energy spectrum at a finite Reyno
number, our calculations are based on the inertial-range K
mogorov spectrum only.

Here we estimate the contributions from the regions
integration specified as 1, 2 and 3 in Fig. 3. In order
estimate the right-hand side of Eq.~3.1! we rewrite it as

F ]

]t
12nk2GE~k!5

p

4k3
@S~k!2R~k!Q~k!#, ~4.1!

where

R~k!5E dlE d j
1

l j
H~k,l , j !I ~k,l , j !u~k,l , j !Q~ l !,

~4.2!

S~k!5E dlE d j
1

l j
H~k,l , j !I ~k,l , j !u~k,l , j !Q~ l !Q~ j !.

~4.3!

FIG. 4. Illustration of the behavior ofH, as defined by Eq.~3.3!,
and plotted here asH/k452( j /k)21( l /k)2@( l /k)22( j /k)221#. In
the dark regionH is negative. Outside this regionH is positive. In
this figure (a)5A221 and (b)5A211.
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In the following we consider two cases withk<kc : ~i! k
!kc and~ii ! k'kc . Note thatR(k) is the dynamical friction
~or friction for short! andS(k) is the diffusion term.

A. Asymptotic range: k™kc

Referring to Fig. 3, we begin by considering region 3 a
after that we consider regions 1 and 2 together.

1. The Reynolds term: Region 3

We denote the contribution from Region 3 toR andS by
the subscript ‘‘3.’’ The calculation was carried out using
Taylor expansion in powers ofk/kc . From Eqs.~4.12! and
~4.13!, and retaining the largest term, we obtain

R35
8

3
k5F E

kc

kmax
dlH Q~ l !

v~ l !
l 2S 11

a~ l !

5 D J 2
1

5
kc

3 Q~kc!

v~kc!
G ,
~4.4!

S35
8

3
k5F E

kc

kmax
dlH Q~ l !2

v~ l !
l 2S 11

b~ l !

5 D J 2
1

5
kc

3 Q~kc!
2

v~kc!
G ,

~4.5!

where

a~ l !511
lv8~ l !

v~ l !
, and b~ l !5a~ l !22

lQ8~ l !

Q~ l !
.

~4.6!

In the inertial regiona55/3, b59, and

R35
32

15
k5kc

3 Q~kc!

v~kc!
, and S35

24

25
k5kc

3 Q~kc!
2

v~kc!
. ~4.7!

The ratioR(k)/k5 is the eddy viscosity. ComparingS3 with
R3Q(k), we have

S3

R3Q~k!
5

9

20

Q~kc!

Q~k!
. ~4.8!

We note that the ratio on the left-hand side of Eq.~4.8! is
small as long ask!kc .

2. The ‘‘cross term’’: Regions 1 and 2

The result of a similar calculation is

R11R252
Q

v
kc

2k6F11
1

6
a~kc!1

1

6 S Q

v D 8v

Q
kcG , ~4.9!

S11S252
Q2

v
kc

2k6F11
1

6
b~kc!1

1

6 S Q2

v D 8 v

Q2
kcG .

~4.10!

In the inertial range this becomes

R11R25
10

9

Q~kc!

v~kc!
kc

2k6 and S11S25
7

3

Q2~kc!

v~kc!
kc

2k6.

~4.11!
7-6
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If we compare Eq.~4.11! with Eq. ~4.7!, then we have

R11R2

R3
5

25

48

k

kc
and

S11S2

S3
5

175

72

k

kc
, ~4.12!

which indicates that the contribution of the cross term can
neglected whenk!kc .

In conclusion, the dominant contribution to the Reyno
term in the asymptotic range (k!kc) comes from the fric-
tion. The diffusion contribution is smaller by a facto
Q(kc)/Q(k) than the friction one. The cross term also r
ceives contributions from friction and diffusion. Howeve
both contributions are smaller than the corresponding con
butions to the Reynolds term by a factork/kc . Both these
conclusions, which are based on an order of magnitude
mation, would also hold true for a realistic spectrum a
finite Reynolds number, because a real viscous spectru
known from experiment to fall off faster than a power wi
increasing wave number.

B. Near-cutoff range: kÉkc

In this range, it is very difficult to estimateR and S in
various regions analytically. However, we can establish
limiting values ask goes tokc . For k'kc we obtain

R3;R11R2 , S3;S11S2 , R3Q;S3 . ~4.13!

If we take into account the numerical prefactors obtain
from the leading order in the Taylor expansion,S11S2 ap-
pears to overwhelm theS3 term ask approaches the cutof
wave numberkc . Near the cutoffkc the contributions from
the Reynolds term and the cross term will be of the sa
order of magnitude. In this region a more detailed comp
son of the two must rely on numerical computation to wh
we turn in the following section.

V. NUMERICAL EVALUATION OF ENERGY TRANSFER

In this section we focus on the separate energy tran
rates due to the Reynolds and cross terms. We cannot
sider the individual contributions from the friction and diffu
sion separately, as for computational reasons it is neces
to work with the total kernel. This matter is explained
more detail in Appendix C, where we establish~for the Kol-
mogorov spectrum! that if the various contributions are com
puted separately, the integration in the cross term will
verge in the regionl'0 andj 'k. Convergence relies on th
vanishing of the factorQ( j )2Q(k) as can be shown by
expanding in powers ofl /k. This is related to the well known
fact that early closures were incompatible with the Kolm
gorov spectrum, due to pathological behavior of the respo
integral @6#, despite the fact that the energy equation w
well behaved.
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A. Numerical computation

The integration region ofTreyn(kukc) in Eq. ~3.7! is re-
gion 3, as depicted in Fig. 3, which contains a large region
which H is negative. The integration overl and j converges,
so that the numerical evaluation is straightforward.

The integration region ofTcross(kukc) in Eq. ~3.8! con-
sists of regions 1 and 2 in Fig. 3. Whether or not a nega
region ofH is included in the integration region depends
the value ofkc /k. We must be careful with the integration i
the vicinity of l 50 corresponding to the pointP2 in Fig. 3
and j 50 corresponding to the pointP1, which arises when
k→kc . As shown in Appendix C, however, the contribution
from those regions are negligible.

For the purposes of the numerical computation it is he
ful to expressk, l, and j in terms of dimensionless variable
x, y, andz, thus

k5kcx, l 5kcy, j 5kcz. ~5.1!

To complete the description, the following forms of the e
ergy spectrumQ(k) and the modal decay ratev(k) are in-
troduced:

Q~k!5~C/p!«2/3k211/3f ~k/kmax!

5~C/p!«2/3kc
211/3x211/3f ~ax!, ~5.2!

v~k!5s«1/3k2/3g~k/kmax!1nk25s«1/3kc
2/3x2/3z~ax!,

~5.3!

z~x!5g~x!1~bx!4/3, ~5.4!

wherea5kc /kmax andb5kmax/ k̃d with k̃d5(«s3/n3)1/4, C
is the Kolmogorov prefactor~spectral constant!, ands is the
analogous constant in the inertial range form of the mo
decay ratev(k). The scaling functionsf (x) and z(x) are
unity for x!1 and decay exponentially forx@1.

Substituting Eqs.~5.1!–~5.3! into Eqs. ~3.7! and ~3.8!
yields

Treyn~kukc!5kc
21E

1

a21

dyE
1

a21

dz T~x,y,z!, ~5.5!

Tcross~kukc!5kc
21F E

1

a21

dyE
0

1

dz

1E
1

a21

dyE
0

1

dzGT~x,y,z!, ~5.6!

where
T~x,y,z!5
C2«

s

1

xyz
H~x,y,z!I ~x,y,z!,

y211/3f ~ay!@z211/3f ~az!2x211/3f ~ax!#

x2/3z~ax!1y2/3z~ay!1z2/3z~az!
. ~5.7!

026317-7
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TABLE I. Treyn(kukc) andTcross(kukc) as functions ofx5k/kc . Note that each transfer term has be
divided by the common factorC2«/(kcs).

x 0.01 0.05 0.1 0.2 0.3 0.5 0.8 0.9 1.0

2Treyn(x) 0.27 0.44 0.54 0.66 0.74 0.86 0.95 0.96 0.95
2Tcross(x) 0.001 0.008 0.020 0.054 0.11 0.32 1.19 1.90 5.4
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We base the following analysis of the energy transfer on
dimensionless formulation.

B. Numerical analysis of energy transfer
at infinite Reynolds number

We assume the infinite Reynolds number case, which
plies that the Kolmogorov spectrum holds over the en
wave number space, and the scaling functions becomef (x)
5z(x)51. Obviously, more general forms off (x) andz(x)
and a specific value of the parametera5kc /kmax would be
needed at a finite value of the Reynolds number. These
pects will not be considered here.

1. Treyn„kzkc… and Tcross„kzkc…

The transfer spectraTreyn(kukc) and Tcross(kukc) are
listed in Table I as functions ofx5k/kc . As we are only
interested in their relative magnitudes at this point, we h
divided each of them by a common factorC2«/(kcs).Note
thatTcross(kukc) is negligible in comparison to the Reynold
term asx→0 but overwhelmsTreyn(kukc) for k/kc>0.8.
This means that the cross interaction is important only n
the cutoff. The decrease inTcross(kukc) ask tends to zero is
in agreement with the previous analytical estimates of
energy transfer for the casek!kc in section IV A.

We may use the energy transfer rateT(k) to introduce the
effective viscosity, as

dn~k!52
T~k!

2k2E~k!
. ~5.8!

Following a standard convention, we can expressdn(k) in
terms of a dimensionless effective viscosity, denoted here
X(k), thus

dn~k!5AX~k!FE~kc!

kc
G1/2

, ~5.9!

whereA is a numerical constant. Figure 5 shows the effect
viscosity X(k)5x21/3T(x) for the total transfer rateT
5Treyn1Tcross.In the asymptotic regionk!kc it is constant
as expected, while in the vicinity ofk5kc there is a cusp. In
Fig. 5 we also include the effective viscosities fro
Treyn(kukc) andTcross(kukc) separately. It is noteworthy tha
Xreyn(k) is almost independent ofk: it decreases slightly ask
approaches the cutoff wave numberkc . On the other hand
Xcross(k) shows a cusp in the vicinity ofk5kc in agreement
with results from other investigations@10,14–16#. For k
<0.7kc the Reynolds-term viscosity is dominant.
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Let us compare our computedX(k) with some previous
results. Kraichnan used the test field model@15# while Chol-
let and Leisure applied the very similar EDQNM@14#. We
shall make a comparison with the work of the latter auth
who gave an approximate expression forX(k) as

X~k!5D8$0.26719.21exp@23.03~kc /k#%, ~5.10!

whereD8 is a numerical constant. We compared our pred
tions arising from EFP with Eq.~5.10! in Fig. 6. HereD8 is
adjusted such that both results agree with each other in
asymptotic regimek!kc . The solid line represents th
present numerical calculation, and the dotted line cor
sponds to Eq.~5.10!. Evidently, the qualitative agreement
reasonable while some quantitative differences remain.

It is also of interest to compare our findings with pred
tions obtained from direct numerical simulation. One su
example is described by Domaradzkiet al. @16#, whose esti-
mate of the viscosity~5.8! was based on DNS. Howeve
since their simulation did not have an extended inertial
gion, the viscosity obtained did not have a proper asympt
region fork!kc in which the viscosity tends to be constan
In fact, from the DNS it was observed that the viscos
could even become negative. Nevertheless, the cusp in
vicinity of k5kc was found to be a characteristic featur
Our result is consistent with this.

FIG. 5. Dimensionless effective viscositiesX(k), Xreyn(k), and
Xcross(k) as defined by Eq.~5.9!. Evidently the Reynolds term de
termines the asymptotic regionk/kc→0 while the cross term is
responsible for the cusp.
7-8
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2. Decomposition of Treyn„kzkc…

We further decomposed the effective viscosityXreyn(k)
into friction and diffusion terms, denoting these byXr f and
Xrd , respectively. We do this using the decomposition
Treyn into R3Q(k) andS3, whereR3 andS3 are given by Eq.
~4.14! and ~4.15!, then invoking Eqs.~5.8! and ~5.9! for the
effective viscosity.

SinceXrd is found to be negative, we have plottedXr f and
2Xrd in Fig. 7. It should be noted thatXr f is much larger
than 2Xrd in the entire wave number region, and that t
magnitude of2Xrd decreases very rapidly ask decreases
The analytical estimates provided in Sec. IV A confirm t
dominance of friction over diffusion ask!kc . The numeri-
cal evaluation extends these estimates and shows that
property is maintained up to the region wherek'kc .

FIG. 6. Comparison of the present subgrid effective viscos
with the EDQNM @14# result.

FIG. 7. Dimensionless effective viscositiesXr f (k) andXrd(k),
showing the relative contributions of the friction and diffusio
terms to the Reynolds stress.
02631
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3. Decomposition of Tcross„kzkc…

The transfer rate associated with the cross term show
cusp and in order to find out more about the origin of t
cusp we first decomposedTcross(kukc) into two parts:

Tcross~kukc!5Tc1~k!1Tc2~k!, ~5.11!

which correspond to the regions of integration 1 and 2,
spectively, in Fig. 3, and where

Tc1~k!5E
kc

`

dlE
0

kc
d j T~k,l , j ! ~5.12!

and

Tc2~k!5E
kc

`

d jE
0

kc
dl T~k,l , j !, ~5.13!

with T(k,l , j ) as given by Eq.~3.2!. We showTc1(k) and
Tc2(k) in Fig. 8 from which it is clear that the main source
the cusp inTcross(k) is Tc2(k). This is not entirely surprising
as we have

E
0

kc
Tc1~k!dk5E

kc

`

dlE
0

kc
d jE

0

kc
dk T~k, j ,l !50,

~5.14!

since

T~k, j ,l !52T~ j ,k,l !,

and soTc1(k) does not contribute to the energy transf
throughkc . Note that both components ofTcross(k) change
their sign ask decreases.

y

FIG. 8. TermsTc1(k) andTc2(k) as defined by Eqs.~5.12! and
~5.13! corresponding to regions of integration 1 and 2, respectiv
in Fig. 3. Evidently,Tc2(k) is responsible for the ‘‘cusp,’’ consisten
with the fact that by symmetryTc1(k) gives zero contribution to the
flux throughkc : see Eq.~5.16!.
7-9
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Since the cusp arises mainly fromTc2(k) it is of interest
to determine which part of region 2 in Fig. 3 contribut
most toTc2(k). In order to determine the main interactio
contributing toTc2(k), we divided the integration region fo
l into four strips of equal width. That is, from Eq.~3.6! and
Fig. 3, we may define region 2 as

kc> l>kc2k, j >kc .

This region is now further subdivided into four smaller stri
defined as~1! kc20.75k> l>kc2k; ~2! kc20.5k> l>kc
20.75k; ~3! kc20.25k> l>kc20.5k; ~4! kc> l>kc

20.25k. Figure 9 shows the contributionsTc2
(m)(k) corre-

sponding to integration over the individual segmentsm
51,2,3,4 identified above. We see that the contribution fr
the first segmentTc2

(1)(k) is responsible for the cusp i
Tc2(k). The contributions from the other segments are
only considerably smaller but in addition they are seen
vary rather smoothly. This result will be helpful when in Se
VI we consider how the cross-term can best be modeled
the wave number cutoff.

C. Energy flux acrosskc

In this section we estimate the energy flux across the
off wave numberkc numerically using the expression give
in Eq. ~2.13!. We recall

P reyn~kc!52E
0

1

Treyn~x!dx

and

Pcross~kc!52E
0

1

Tcross~x!dx, ~5.15!

FIG. 9. Further decomposition ofTc2(k) into contributions from
different integration regions for wave numbersl, as discussed in
Sec. V B3.
02631
t
o
.
ar

t-

One can readily estimateP reyn(kc) andPcross(kc) by inte-
gratingTreyn(x) andTcross(x) over x. The result is

P reyn~kc!50.80
C2«

s
and Pcross~kc!50.68

C2«

s
,

~5.16!

which indicates that Pcross(kc) is comparable with
P reyn(kc) for the inertial range spectrum, butP reyn(kc) is
still the larger. Note thatPcross(kc) is due to the single de
composition componentTc2(k), as defined by Eq.~5.14!,
because the integration ofTc1(k) gives a null result by sym-
metry.If we substitute the two expressions making up E
~5.16! into the boundary conditionP(kc)5«, we have

1.48
C2«

s
5«, ~5.17!

so that the numerical coefficient of the viscositys is related
to the Kolomogorov constantK054C as

s51.48C250.0925K0
2 . ~5.18!

If we use a currently accepted value ofK051.6, we find

s50.24. ~5.19!

It is worth checking the correctness of the value obtain
for Pcross(kc) by employing another expression, original
derived by Kraichnan@17#. It is shown in Appendix D that
the energy fluxPcross(kc) can be converted to the expre
sion

Pcross~kc!5E
kc

`

dkE
0

kc
dlE

0

kc
d j T122~k,l , j !. ~5.20!

Evaluating this expression we reached the same resu
Pcross(kc) in Eq. ~5.16! which confirms our previous calcu
lation.

In order to know how much of the energy in the wa
number region less thank is drained by the Reynolds an
cross terms, we integratedTreyn(k8) and Tcross(k8) over 0
<k8<k:

P reyn~k!52E
0

k/kc
Treyn~x8!dx8,

~5.21!

Pcross~k!52E
0

k/kc
Tcross~x8!dx8,

and results forP reyn(k) andPcross(k) may be found in Fig.
10. From this figure we see that the Reynolds term cont
utes to the flux at any wave number, while the cross te
only becomes important at wave numbers close to the cu
The cross term drains only a small amount of energy fr
wave numbers less thank whenk<0.5kc .
7-10
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VI. FORMULATION OF A ‘‘LARGE-EDDY’’ SIMULATION

In this section we will put forward a model to represe
the dynamic effects of modes withk>kc on the evolution of
the explicit modes withk<kc . This model will be based on
our results for the Reynolds and cross terms obtained in
previous sections. The proposed model is required to re
sent the effects of the termFa@w2(k)# which appears in the
truncated momentum equation. In the first instance we
incorporate properties and considerations involving the sp
tral energy balance and flux, from which all phase inform
tion about the solution has been eliminated by construct
After that, the element of phase coupling will be addresse
Sec. VI B 2.

In order to do this we will find it convenient to first rede
fine the asymptotic and near-cutoff ranges of wave numb
in a more specific way than we did in Sec. IV. Let us supp
that j . l for simplicity.

First we consider the case whenl .kc . Here both com-
ponents are in the subgrid region and the subgrid stres
represented by the Reynolds term only. The situation is s
lar to the asymptotic range in Sec. IV.

Next turn to the casel ,kc : that is, the cross term. From
Eq. ~3.6! we have l . j 2k, so the lowest value of wave
numberl is l min5kc2k. Depending on whetherl min.k, that
is, k,kc/2; or l min,k, that is,k.kc/2, the situation is quite
different. As can be seen from Table I, in the former case
energy transfer contribution from the cross term can be
nored as compared with the Reynolds term. In the latter c
one cannot neglect the contribution of the cross term. Ak
approacheskc , the cross term overwhelms the Reynol
term.2

Hence it will be convenient to decompose the range of

2This is actually a slight overstatement and we shall make a m
careful assessment of this point in Sec. VI D 3.

FIG. 10. P reyn(k), Pcross(k), and their ratio.
02631
t

e
e-

ll
c-
-
n.
in

rs
e

is
i-

e
-

se

e

resolved scales into two parts, viz.,~1! The asymptotic range
k<kc/2; ~2! the near-cutoff range:k>kc/2.

A. The asymptotic range:kÏkcÕ2

In this range the interaction of the resolved scales with
subgrid scales can be regarded as adistant interaction, as
illustrated in Fig. 11. The Reynolds term, as judged both
spectral energy balance~see Fig. 5! and by flux~see Fig. 10!,
is dominant over the cross term, and this suggests that it
also be dominant in the momentum equation for this range
wave numbers.

In addition, the fact that we have shown that the ma
contribution to energy transfer associated with the Reyno
stress comes from the dynamical friction, offers more fun
mental support to the proposal that we should represent
term by an eddy viscosity. Hence we propose to include
effective eddy viscosity in Eq.~2.5!. The coefficient of the
eddy viscosity should be modified from an asymptotic va
calculated fork!kc , to a value depending onk/kc , as
shown inXr f (k) in Fig. 7.

The inclusion of the diffusion effect is subsidiary; but
practice it could prove quite helpful to include it. The r
quired eddy viscosity is hence based onXreyn(k), as shown
in Fig. 5. This is computed fromTreyn(k), and is almost
independent ofk in this ~asymptotic! range of wave numbers

B. The near-cutoff range: kcÕ2ÏkËkc

In this range, modek is affected by both local interaction
where kc, j ,2k and distant interactions where 2k, j
,kmax, as shown in Fig. 12. Here we should make it cle
how the termlocal interaction is used in the present pape
Some authors such as Ohkitani and Kida@18# have used the
term to represent the interactionk' l' j and in that context a
term such asl !k' j is called a distant interaction. In th
present discussion we are concerned with the magnitudek
andj only. We refer to an interaction such ask! j as a distant
interaction, while an interaction such ask' j is a local inter-
action. In this subsection we consider how the stresses ca
treated in order to represent both distant and local inte
tions.

1. Distant interactions: 2kË jËkmax

In this model, as we saw in Sec. IV A, the distant inte
actions are mainly represented by the dynamical friction p

re

FIG. 11. For modes withk,kc/2 only distant interactions are
possible.
7-11
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of the Reynolds term. Thus the arguments put forward
Sec. IV A for the asymptotic rangek<kc/2 will also hold for
the distant interactions in the near-cutoff range withkc/2
<k<kc . In practice, one might encounter problems ifkmax
is not much larger than 2k, or if the energy spectrum decay
very rapidly with wave number, as encountered in the dis
pative region. Then the asymptotic form of the viscos
would need to be modified. However, this amounts to a
striction on the choice ofkc as compared tokmax. In the
typical casekmax@2kc . Accordingly, the use of a constan
viscosity resulting from the Reynolds term seems appro
ate, and this is supported by the results forXreyn(k), as
shown in Fig. 5.

2. Local interactions: kcËjË2k

From both Fig. 5 and Table I we can see that the cr
term dominates ask→kc . This suggests that the cross ter
is mainly responsible for the local interactions and this
easily shown as follows. As we saw in Sec. V B 3, the m
important contribution from the cross term isTc2(k); and, in
particular, the contribution from small values ofl in the in-
tegral. From Eq.~5.13! for Tc2, we note that ask→kc and
l→0, the triangle condition requiresj→kc . Hence only lo-
cal interactions are involved.

As the Reynolds term has been shown to take care of
distant interactions, which is the ‘‘random’’ aspect of th
coupling, it seems logical to assume that the local inter
tions represent the ‘‘deterministic’’ aspect, and this provid
us with a hint as to how we should model it.

The following proposal seems to be the simplest mo
that is consistent with the findings from the numerical ana
sis in Sec. V. Obviously the success of any model can
tested only by examining simulation results obtained with
and this is the subject of ongoing research.

We propose to approximateub
1( j ,t) by using the arbitrary

resolved-scale velocity fieldub
2(q,t) and assuming a deter

ministic connection between the two. Writingub
1( j ,t) as

ub
1~ j ,t !5ub

2~q,t !1@ub
1~ j ,t !2ub

2~q,t !#, ~6.1!

we want to make the error, that is, the second term on
right-hand side in Eq.~6.1!, as small as possible. If the erro
is Taylor expanded, we have

FIG. 12. For modes withk.kc/2 both distant and local interac
tions are possible.
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ub
1~ j ,t !2ub

2~q,t !5~ j2q!•“qub
2~q,t !. ~6.2!

Then the error is expected to become small whenu j2qu is
small. This is realized whenkcĵ is chosen asq with ĵ being a
unit vector alongj , where

j2q5 j2kcĵ5S 12
kc

j D j . ~6.3!

The wave vector configuration in such a case is depicted
Fig. 13, wherel is much smaller thankc and j is slightly
larger thankc . This is the most important configuration con
tributing to the cross term as confirmed by the decomposi
of Tc2(k): see Sec. V B 3 and Fig. 9.

We further propose that in the case of the near interac
in the cross term:

Mabg~k!(
j

dk,j1 lub
1~ j ,t !ug

2~ l,t !, ~6.4!

ub
1( j ,t) is approximated by the velocity field nearest in t

wave vector space to the velocity field on a resolved sca

ũb
1~ j ,t !5mub

2~kcĵ ,t !G~ j /kc!5mwb
2~kcĵ ,t !G~ j /kc!,

~6.5!

whereG( j /kc) signifies how the amplitude should be mod
fied depending on wherekc and j are located. Herem is a
constant factor taking into account any possible phase m
match, so that it is less than or equal to unity. For simplic
we shall assume that it is unity. Ifj is in the inertial range,
then

G2~ j /kc!5~ j /kc!
211/3. ~6.6!

The advantages of the above approximation may be st
as follows. Proper models for the parametrization of the
fects of the small scales should also include phase coup
between the explicit and the implicit modes. The phase
fects are considered to a certain extent in this model, beca
the phase ofub

1( j ,t) is expected to be not so different from

that ofub
2(kcĵ ,t). The phase effect signifies that the model

term works as a forward transfer of energy for some of
time and a backward transfer of energy at other times.

C. Proposed ‘‘subgrid’’ model

In this subsection we propose a model for the moment
equation based on the preceding energy considerations.

FIG. 13. Triangle of wave vectors representing the cross te
Hereej is the unit vector alongj .
7-12
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1. Asymptotic range: kÏkcÕ2

In the first instance, we assume that the cross term d
not contribute to energy transfer in this wave number ran
Hence Eq.~2.5! can be written as

F ]

]t
1nk2Gwa

2~k,t !5Mabg~k!( dk,j1 lwb
2~ j ,t !wg

2~ l,t !

2n r~kukc!k
2wa

2~k,t !. ~6.7!

The eddy viscosityn r(kukc) is taken to be due to the entir
Reynolds term3 represented by Eq.~5.9! with constantXreyn
and is

n r~kukc!5s«1/3kc
24/35sK0

21/2S E~kc!

kc
D 1/2

50.2S E~kc!

kc
D 1/2

,

~6.8!

where we have also made use of Eq.~5.8!. Note that once we
have considered the need for continuity with the model in
near-cutoff range, we shall modify this equation to the fo
given later in Eq.~6.17!.

2. Near-cutoff range: kcÕ2ÏkËkc

In this wave number range the cross term is roughly of
same order of magnitude as the Reynolds term, as far a
energy is concerned. Hence we propose a mixed model
sisting of the viscosity plus the similarity term approximat
by Eq. ~6.5!.

In order to write the model equation we have to kno
which cross term must be kept. The cross term in the eq
tion for ua

2(k,t) in Eq. ~2.2! has two parts:

2 i(
j ,l

dk,j1 l@kgDab~k!ub
1~ j ,t !ug

2~ l,t !

1kbDag~k!ub
1~ j ,t !ug

2~ l,t !#. ~6.9!

The energy contribution is obtained by multiplying Eq.~6.9!
by ua

2(2k,t) and averaging, as before, over realizations:

2 i(
j ,l

dk,j1 l@^u
2~2k,t !•u1~ j ,t !k•u2~ l,t !&

1^u2~2k,t !•u2~ l,t !k•u1~ j ,t !&#. ~6.10!

When we further consider the energy transfer, the sec
term in Eq.~6.10! vanishes upon integration overk, so that it
corresponds toTc1(k). From these considerations we inf
that we should retain the first term in Eq.~6.9! as the neces
sary cross term:

2 i(
l,j

dk,l1 jkgDab~k!ub
1~ j ,t !ug

2~ l,t !. ~6.11!

3This is preferable, because it is almost independent of wave n
ber.
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Then we can express Eq.~2.5! as

F ]

]t
1nk2Gwa

2~k,t !5Mabg~k!( dk,j1 lwb
2~ j ,t !wg

2~ l,t !

2n r~kukc!k
2wa

2~k,t !

2 i(
l,j

dk,l1 jkgDab~k!ũb
1~ j ,t !wg

2~ l,t !,

~6.12!

whereũb
1( j ,t) is given by Eq.~6.5!. However, since the term

(
l,j

dk,l1 jkbDag~k!ũb
1~ j ,t !wg

2~ l,t ! ~6.13!

does not contribute to the energy we include Eq.~6.13! in
Eq. ~6.12! which has the benefit of keeping the model equ
tion symmetrical. In total, the proposed model equation
k>kc/2 is

F ]

]t
1nk2Gwa

2~k,t !5Mabg~k!( dk,j1 lwb
2~ j ,t !wg

2~ l,t !

2n r~kukc!k
2wa

2~k,t !

12Mabg~k!(
l,j

dk,l1 jũb
1~ j ,t !wg

2~ l,t !.

~6.14!

3. Continuity at kÄkcÕ2

Finally, we want to formulate the full model such th
expressions~6.12! and~6.14! are continuous atk5kc/2. The
difference is only the last term in Eq.~6.14!, which yields
Tcross(k5kc/2) as far as the energy is concerned. Tabl
indicates that the ratio ofTcross(k) to Treyn(k) is 0.37, so,
althoughTreyn(k) is larger thanTcross(k), the latter is cer-
tainly not negligible. To compensate for it, we should add
contribution from the cross term to Eq.~6.7! in the form of
the additional eddy viscosity

2nc~kukc!k
2wa

2~k,t !, ~6.15!

wherenc(kukc) is the eddy viscosity due to the cross term4

As can be seen from Fig. 5,nc(kukc) decreases ask/kc does.
Its dependence onk/kc can be estimated from its asymptot
form. As we saw earlier the contribution from the cross te
is a factor k/kc smaller than the Reynolds term, so th
nc(kukc)}k/kc . Therefore we put

nc~kukc!50.74~k/kc!n r~k/kc!, ~6.16!

where the coefficient is selected in such a way t
nc(kukc)/n r(kukc)50.37 atk5kc/2.

- 4In the asymptotic region 0<k<kc/2 the cross term also behave
like a viscous term.
7-13
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With this in mind, the model equation fork,kc/2 as
given by Eq.~6.7!, is now replaced by

F ]

]t
1nk2Gwa

2~k,t !5Mabg~k!( dk,j1 lwb
2~ j ,t !wg

2~ l,t !

2n r~kukc!~110.74k/kc!k
2wa

2~k,t !.

~6.17!

4. Optimization

In the model just given we have divided the wave num
region into two parts atk5kc/2. Although this choice of a
dividing wave number is intuitively plausible it is also arb
trary. In practice, it may be better to adopt a more gene
approach and choose as the dividing wave numberk5lkc ,
where l is a constant, such that 0<l<1, which may be
treated as an optimization parameter. Then fork<lkc we
have

F ]

]t
1nk2Gwa

2~k,t !5Mabg~k!( dk,j1 lwb
2~ j ,t !wg

2~ l,t !

2n r~kukc!@11F~l!k/kc#k
2wa

2~k,t !.

~6.18!

HereF(l) is determined in such a way that the energy tra
fer rate is continuous atk5lkc :

F~l!5
Xcross~l!

lXreyn~l!
, ~6.19!

where Xcross(k/kc)/Xreyn(k/kc) is given in Fig. 14. Fork
>lkc we have the same equation as Eq.~6.14!. It should be
noted that if the value ofl is chosen too large, we may no
use the asymptotic form ofnc(kukc) proportional tok/kc
such as Eq.~6.16!.

FIG. 14. Ratio ofXcross(k) to Xreyn(k).
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Lastly, we consider the physical significance of the div
ing wave numberlkc . In view of the preceding discussion
the magnitude ofl measures how much the cross term
taken account of in the form of eddy viscosity. Larger valu
of l mean that the cross term is represented to a gre
extent by the eddy viscosity. Smaller values ofl signify that
the more general dynamical effects of the cross term
taken into account.

VII. CONCLUSION

The essential difficulty of the turbulence problem is oft
characterized as being the interplay between randomness
coherence. A purely random problem could be solved by
methods of statistical mechanics while a purely coher
problem would be deterministic and hence treatable by
methods of classical mechanics. In considering how to
duce the number of degrees of freedom in a numerical si
lation of the Navier-Stokes equations, we have used
Edwards-Fokker-Planck energy equation as a guide to
modeling. This allowed us to identify which subgrid stress
can be modeled as if of purely random origin and whi
subgrid stresses can be plausibly treated as deterministi
the former case, we introduce an effective eddy viscosity
the latter case we assume that subgrid modes are slave
explicit modes. This procedure is facilitated by dividing th
explicit scales into two wave number ranges, with a cor
sponding modeled equation of motion for each. In this w
we can retain the primary effects arising from the nonline
coupling between explicit~or resolved! modes and implicit
~or subgrid! modes.

Specifically, fork,kc/2, we have Eq.~6.17!, which we
repeat here for convenience:

F ]

]t
1nk2Gwa

2~k,t !5Mabg~k!( dk,j1 lwb
2~ j ,t !wg

2~ l,t !

2n r~kukc!~110.74k/kc!k
2wa

2~k,t !.

Also, for k>kc/2, the model equation is Eq.~6.14!, thus

F ]

]t
1nk2Gwa

2~k,t !5Mabg~k!( dk,j1 lwb
2~ j ,t !wg

2~ l,t !

2n r~kukc!k
2wa

2~k,t !

12Mabg~k!(
l,j

dk,l1 jũb
1~ j ,t !wg

2~ l,t !,

~7.1!

where ũb
1( j ,t) is given by Eq. ~6.5!. In both equations,

n r(kukc) is given by Eq.~6.8!.
Of course, this set of equations is only valid for the mod

system obtained by combining the Navier-Stokes equa
with the EFP equation for the energy transfer. For instan
we identified the separate energy flux due toP reyn and
Pcross in Eq. ~5.16!. Substituting the result for the consta
s in Eq. ~5.18! into the two relationships of Eq.~5.16! results
in the values:
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P reyn~kc!50.54« and Pcross50.46«.

Presumably, these particular numbers are characteristic o
EFP closure and we conjecture5 that for pure Navier-Stokes
turbulence both fluxes will be exactly equal to 0.5«.

Evidently, this set of equations can only be assessed
Navier-Stokes turbulence by actually using them to perfo
a partially resolved~or large-eddy! simulation and compar
ing the results to those from a fully resolved simulation w
the same initial conditions as far as the large scales are
cerned. This will be the subject of further work and in whi
we will also explore the optimized form that is obtaine
when we replace Eq.~6.17! by Eqs.~6.18! and ~6.19!.

Naturally, we hope that this investigation will lead
techniques that are of practical value in the study of fl
turbulence but at the same time we hope to shed more
on the underlying structure of the EFP@4#. Renormalized
perturbation theories of this kind have suffered unjustifi
neglect for many years and EFP is of particular interes
that it has a strong physical basis and is founded on
well-known fact that single-point velocity distributions i
turbulence depart only slightly from the Gaussian form. O
reason for this neglect is the difficulty involved in testin
such theories in practical situations that invariably invo
both anisotropy and inhomogeneity. The application to
modeling problem in large-eddy simulation may be one w
round this difficulty, as the small eddies can often be taken
isotropic and homogeneous.

Lastly, we mentioned at the outset that we have pre
ously approached the present problem using the metho
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iterative conditional averaging@1#. Numerical assessments o
that work have been given elsewhere@10#. In that approach,
we work with a conditional average of what is here called
Reynolds term. We have made it clear that this conditio
mode elimination can only contribute to a renormalized d
sipation rate and does not fully include phase-coupling
fects. The view was expressed@1,10# that, despite the fac
that the ‘‘cross term’’ does not contribute to the condition
average, the dissipation rate is determined to a good appr
mation by the RG-type procedure. This was supported b
calculation of the Kolmogorov prefactor@1#.

In the present work we see that the ‘‘cross term’’ and t
Reynolds term make similar contributions to the ener
transfer rate@see Eq.~5.16!#. The two situations may not be
directly comparable. Here we eliminate modes, such thakc

<k<kmax, in one operation. In the conditional mode elim
nation @1# we eliminate modes progressively in shells, re
caling between each elimination. This point requires eluci
tion and will be the subject of further work.

APPENDIX A: THE EQUATION FOR THE ENERGY
SPECTRUM

In order to estimate the order of magnitude of the Re
nolds term and the cross term we examine the energy e
tion obtained by a closure approximation. According
~E20! in McComb’s book@6# the equation for the energ
spectrumE(k)54pk2Q(k) becomes
S ]

]t
12nk2DE~k!5T~k!54pk2E d3 j E d3l d~k2 j2 l!32B~ j ,k,l!u~k,l , j !Q~ l !@Q~ j !2Q~k!#, ~A1!

where

u~k, j ,l !5
1

v~k!1v~ j !1v~ l !
~A2!

and

B~ j ,k,l!5L~k,k2 l!5
k422k3lm1kl3m

uk2 lu2
~12m2!, ~A3!

as given by~E24!, wherem is a directional cosine betweenk and l. Then the energy transfer rateT(k) becomes

T~k!54pk2E d3l L ~k,k2 l!u~k,uk2 lu,l !Q~ l !@Q~ uk2 lu!2Q~k!#. ~A4!

For the numerical computation it is convenient to use the integration variablesl and j instead ofl andm,

m5
k21 l 22 j 2

2kl
→dm52

j

kl
d j . ~A5!

5We believe that this can be proved; but, at worst, arguments can be put forward to suggest that this is the case.
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In this notation

12m25
1

4k2l 2
~k1 l 1 j !~k1 l 2 j !~k2 l 1 j !~ l 1 j 2k!,

k422k3lm1kl3m5~1/2!@2k2 j 21 l 2~ l 22k22 j 2!#.

ThenL(k,k2 l) can be expressed as

L~k,k2 l!5
1

8k2l 2 j 2
H~k,l , j !I ~k,l , j !, ~A6!

where

H~k,l , j !52k2 j 21 l 2~ l 22k22 j 2!, ~A7!

I ~k,l , j !5~k1 l 1 j !~k1 l 2 j !~k2 l 1 j !~ l 1 j 2k!. ~A8!

Substituting Eqs.~A5! and ~A6! into Eq. ~A4! yields

T~k!5
p2

k E dlE d j
1

l j
H~k,l , j !I ~k,l , j !u~k, j ,l !Q~ l !@Q~ j !2Q~k!#. ~A9!
th
it

ce
in
Sincek, j, and l make a triangle, the integration region forl
and j is bounded to

l 1 j >k, j 1k> l> j 2k. ~A10!

In the above we employl , j instead ofl, m, as this is more
convenient for our present work.

APPENDIX B: EVALUATION OF THE KOLMOGOROV
CONSTANT AS A CONSISTENCY CHECK

At this point we make a digression: can we determine
Kolmogorov constant? One way of determining the viscos
is to make use of Eq.~5.8!:

n~kukc!52
~C2«/skc!T~x!

2K0«2/3k1/3
52

C2«1/3

2K0s
kc

24/3T~x!

x1/3
.

~B1!

The present numerical calculation givesT(x)/x1/3521.22 in
the asymptotic region. Substituting this andC5K0/4 into
Eq. ~B1! yields

n~kukc!5
1.22K0«1/3

32s
kc

24/3. ~B2!

The frequency defined in Eq.~5.3! is just n(kukc)k
2, so that

s5
1.22K0

32s
. ~B3!

Combining Eq.~5.18! with Eq. ~B3! yields
02631
e
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K051.65, s50.25, ~B4!

which agree with currently trusted values.

APPENDIX C: NUMERICAL CONVERGENCE
OF Tcross„kzkc…

The integration region is regions 1 and 2 in Fig. 3. Sin
Q( l ); l 211/3, we have to be careful with the integration
the vicinity of l'0 and j '0; this situation is realized only
whenk'kc .

1. l\0

The dangerous region is around P2 in Fig. 3, which is
specified as

l 1k> j >kc , kc> l>kc2k. ~C1!

Since we are interested in the integration coming froml'k
2kc'0, a new variablej 5t1k is introduced in place ofj.
Then the region~C1! is changed to

l>t>d, kc> l>d, ~C2!

whered is defined as

d5kc2k, ~C3!

so thatd is regarded as small. We substitutej 5k1t into
various terms in Eq.~3.2! to retain the highest term only:

H52k4, I 54k2~ l 22t2!, u5
1

2v~k!
,

7-16
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1

j
5

1

k
, Q~ j !2Q~k!5tQ8~k!. ~C4!

Then Eq.~3.8! becomes

Tcross~kukc!5
4p2k4Q8~k!

v~k!
E

d
dl

Q~ l !

l E
d

l

dt~ l 22t2!t

5
p2k4Q8~k!

v~k!
E

d
dl

Q~ l !

l
~22l 2d21d41 l 4!.

~C5!

If we use Q( l ); l 211/3, the contribution from the lower
boundd becomes (114/55)d1/3, implying no divergence a
all. The numerical calculation can be safely carried out.

2. j\0

Here we are concerned with the region around point P1 in
Fig. 3. If we introduce a new variable such asl 5t1k, the
integration region is specified by

j >t>d, kc> j >d. ~C6!

Under this situation

H52k3t, I 54k2~ j 22t2!, u5
1

2v~k!
,

1

l
5

1

k
, Q~ l !5Q~k!. ~C7!

Then Eq.~3.8! becomes

Tcross~kukc!5
4p2k3Q~k!

v~k!
E

d
d j

Q~ j !2Q~k!

j E
d

j

dt~ j 22t2!t

5
p2k3Q~k!

v~k!
E

d
d j

Q~ j !2Q~k!

j

3~22 j 2d21d41 j 4!. ~C8!
02631
Again the divergence atj '0 does not occur.

APPENDIX D: ENERGY TRANSFER RATE ACROSS kc

Notice thatT(k,l , j ) in Eq. ~3.2! is antisymmetric under
the exchange ofk and j. However, it is not symmetric unde
the exchange ofj and l. In order to confirm the energy con
servation, it is helpful to introduce the symmetric trans
rate T̃(k,l , j ):

T̃~k,l , j !5
I ~k,l , j !u~k,l , j !

2k j l
$@H~k,l , j !1H~k, j ,l !#

3Q~ l !Q~ j !2@H~k,l , j !Q~ l !

1H~k, j ,l !Q~ j !#Q~k!%. ~D1!

With this definition it is easy to show that

T̃~k,l , j !1T̃~ j ,k,l !1T̃~ l , j ,k!50. ~D2!

Note that the above identity holds irrespective of wherek, l,
andj are located. It means that ifT̃(k,l , j ) is approximated in
a certain way, it must satisfy Eq.~D2! as far as the energy
conservation is concerned.

Using Eq.~D1! the energy transfer rate acrosskc is writ-
ten as

2P~kc!5E
0

kc
dkF E

0

kc
dlE

0

kc
d j1E

0

kc
dlE

kc

kmax
d j

1E
kc

kmax
dlE

0

kc
d j1E

kc

kmax
dlE

kc

kmax
d j G T̃~k,l , j !.

~D3!

The first integration in Eq.~D3! vanishes becausek, l, j are
located in the same wave number region. In the second i
gral the dummy variablesk andj are exchanged, while in the
third onek and l are exchanged:
hat
E
0

kc
dkE

0

kc
dlE

kc

kmax
d jT̃~k,l , j !1E

0

kc
dkE

kc

kmax
dlE

0

kc
d jT̃~k,l , j !

5E
0

kc
d jE

0

kc
dlE

kc

kmax
dkT̃~ j ,l ,k!1E

0

kc
dlE

kc

kmax
dkE

0

kc
d jT̃~ l ,k, j !

5E
kc

kmax
dkE

0

kc
dlE

0

kc
d j@ T̃~ j ,l ,k!1T̃~ l ,k, j !#

52E
kc

kmax
dkE

0

kc
dlE

0

kc
d jT̃~k,l , j !. ~D4!

In deriving the last line we have used Eq.~D2!. If T̃(k,l , j ) is approximated in a wrong way, there will be no guarantee t
the second line of Eq.~D4! is the same as the last line.

Finally, we have the fluxP(kc) defined as
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P~kc!5F E
kc

kmax
dkE

0

kc
dlE

0

kc
d j2E

0

kc
dkE

kc

kmax
dlE

kc

kmax
d j G T̃~k,l , j !. ~D5!

Since the integration regions overl and j are symmetric in Eq.~D5!, we can replace the symmetrized transfer rateT̃ by an
orginal oneT:

P~kc!5F E
kc

kmax
dkE

0

kc
dlE

0

kc
d j2E

0

kc
dkE

kc

kmax
dlE

kc

kmax
d j GT~k,l , j !. ~D6!
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